Name (printed legibly): \square
Directions: The quiz contains 20 problems, and each problem is worth one point. Place your answer in the blank provided. For graphing questions, a set of axes are provided. Calculators are not allowed.
For this quiz only, no partial credit will be given.
Please circle your instructor: Leah Berman (10:30-11:30) Jill Faudree (9:15-10:15)

1. Evaluate $9^{-3 / 2}$.
2. Find the exact value of $\log _{2}\left(\frac{1}{8}\right)$.
3. Find the exact value of $\cos \left(\frac{5 \pi}{3}\right)$.
4. Simplify the expression $\left(\frac{5 x^{2} y}{x^{5} y^{7 / 2}}\right)^{2}$. Write your answer without negative exponents.
5. Write an equation in slope-intercept form $y=m x+b$ for the line that passes through the points $(-7,3)$ and $(-9,-3)$.
6. Expand and simplify $(5 x+1)^{2}-4(x-7)$.
7. Use the graph of $f(x)$ below to estimate the value(s) of x such that $f(x)=1$.

8. For the function $f(x)=\frac{5}{x}$, find the expression $f(12+h)-f(12)$. Simplify your answer and write your answer as a single fraction.
9. Given the piecewise defined function below, determine the value(s) of x such that $f(x)=-20$.

$$
f(x)=\left\{\begin{array}{ll}
2 x+7 & x<0 \\
x^{3} & x \geq 0
\end{array} .\right.
$$

10. Solve for x in the equation $x^{2}+5 x=14$.
11. Solve for x in the equation $e^{4-7 x}=\frac{1}{3}$.
12. Find all solutions to the equation $2 \sin (\theta)=1$ in the interval $[0,2 \pi]$.
13. A table of values for the function $f(x)$ is given below. Use the table to determine $f^{-1}(2)$.

x	-2	0	2	4	6	8	10	12	14
$f(x)$	20	8	4	-2	6	10	2	-3	$-1 / 3$

14. Solve the inequality $36-x^{2} \leq 0$. Give your answer in interval notation.
15. Determine the domain of $f(x)=\ln (x+3)$. Give your answer in interval notation.
16. In the triangle below, $\sin \theta=\frac{2}{5}$. Determine $\tan \theta$.

Sketch graphs of the following functions. Label the x - and y-intercepts, if they exist. Draw in any asymptotes using dashed lines, and write the equation of the asymptote, if it exists.
17. $f(x)=(x+1)^{3}$
18. $f(x)=e^{x}-2$

19. $y=\sin (x)$ on the interval $[-2 \pi, 2 \pi]$

20. Given the graph of $f(x)$ below, draw the graph of $-2 f(x)$.

