Name (printed legibly):

Directions: The quiz contains 20 problems, and each problem is worth one point. Place your answer in the blank provided. For graphing questions, a set of axes are provided. **Calculators are not allowed.**

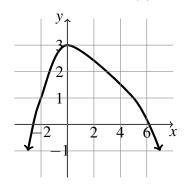
For this quiz only, no partial credit will be given.

Please circle your instructor:

Leah Berman (10:30-11:30)

Jill Faudree (9:15-10:15)

1. Evaluate $9^{-3/2}$.


- 2. Find the exact value of $\log_2\left(\frac{1}{8}\right)$.
- 3. Find the exact value of $\cos\left(\frac{5\pi}{3}\right)$.
- 4. Simplify the expression $\left(\frac{5x^2y}{x^5y^{7/2}}\right)^2$. Write your answer without negative exponents.

5. Write an equation in slope-intercept form y = mx + b for the line that passes through the points (-7,3) and (-9,-3).

6. Expand and simplify $(5x+1)^2 - 4(x-7)$.

7. Use the graph of f(x) below to estimate the value(s) of x such that f(x) = 1.

8. For the function $f(x) = \frac{5}{x}$, find the expression f(12+h) - f(12). Simplify your answer and write your answer as a single fraction.

9. Given the piecewise defined function below, determine the value(s) of x such that f(x) = -20.

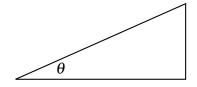
$$f(x) = \begin{cases} 2x + 7 & x < 0 \\ x^3 & x \ge 0 \end{cases}.$$

(

10. Solve for *x* in the equation $x^2 + 5x = 14$.

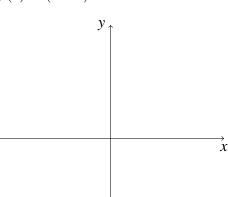
11. Solve for *x* in the equation $e^{4-7x} = \frac{1}{3}$.

12. Find all solutions to the equation $2\sin(\theta) = 1$ in the interval $[0, 2\pi]$.

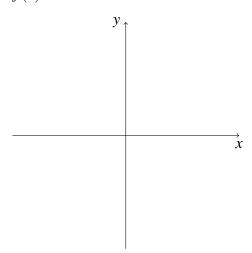

13. A table of values for the function f(x) is given below. Use the table to determine $f^{-1}(2)$.

x	-2	0	2	4	6	8	10	12	14
f(x)	20	8	4	-2	6	10	2	-3	-1/3

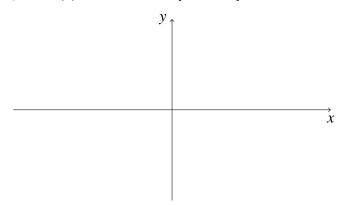
14. Solve the inequality $36 - x^2 \le 0$. Give your answer in interval notation.

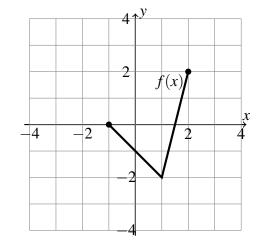

15. Determine the domain of $f(x) = \ln(x+3)$. Give your answer in interval notation.

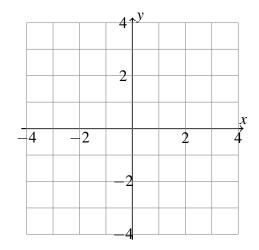
16. In the triangle below, $\sin \theta = \frac{2}{5}$. Determine $\tan \theta$.



Sketch graphs of the following functions. Label the x- and y-intercepts, if they exist. Draw in any asymptotes using dashed lines, and write the equation of the asymptote, if it exists.


17.
$$f(x) = (x+1)^3$$


18.
$$f(x) = e^x - 2$$



19. $y = \sin(x)$ on the interval $[-2\pi, 2\pi]$

20. Given the graph of f(x) below, draw the graph of -2f(x).

