Fall 2019

Quiz 1 - Version 3

Name (printed legibly):

Solutions

Directions: The quiz contains 20 problems, and each problem is worth one point. Place your answer in the blank provided. For graphing questions, a set of axes are provided. **Calculators are not allowed.**

For this quiz only, no partial credit will be given.

DUE: Friday Sept 13 at the beginning of class.

5. Write an equation in slope-intercept form y = mx + b for the line that passes through the points (10, -2) and (-4, 6).

$$m = \frac{6 - (-2)}{-4 - 10} = \frac{8}{-14} = \frac{-4}{7}$$

$$y = \frac{-4}{7} \times \frac{-4}{7}$$

x+10x-9

X = -3, 0, 3

= -24+h

6. Expand and simplify $x(4+2x) - (3-x)^2$.

 $4x + 2x^2 - (9 - 6x + x^2)$ $= 4x + 2x^2 - 9 + 6x - x^2$ $= x^{2} + 10x - 9$

7. Use the graph of f(x) below to estimate the value(s) of x such that f(x) = 3.

8. For the function $f(x) = \frac{8}{x}$, find the expression f(4+h) - f(4). Simplify your answer and write your answer as a single fraction.

 $f(4+h)-f(4) = \frac{8}{4+h} - \frac{8}{4} = \frac{8}{4(4+h)}$ -8h4(4+h)

9. Given the piecewise defined function below, determine the value(s) of x such that f(x) = 12.

$$f(x) = \begin{cases} 3x+1 & x < 0\\ x^5 & x \ge 0 \end{cases}$$

$$x_{20}: 3x+1=12 \text{ or } x = \frac{11}{3} = Not negative.$$

 $X = (12)^{5} = \sqrt{17}$

x>, x=12 or x=(12) okv

10. Solve for x in the equation $2x^2 = 15 - 7x$.

 $2x^{2}+7x-15=0$ $(2 \times -3)(x + 5) = 0$ x=3/2 or x=-5

1.

 $X = 1 - \ln(\frac{4}{3})$

12. Find all solutions to the equation $1 + 2\sin(\theta) = 0$ in the interval $[0, 2\pi]$.

$$1 + 2 \sin \theta = 0 \quad \text{er} \qquad \pi + \pi = \frac{2\pi}{6} \qquad \theta = \frac{4\pi}{6} \quad \text{or} \quad \theta = \frac{1\pi}{6}$$

$$\sin \theta = -\frac{1}{2} \quad -\frac{\pi}{6} \quad \pi + \pi = \frac{\pi}{6} \qquad \theta = \frac{4\pi}{6} \quad \text{or} \quad \theta = \frac{1\pi}{6}$$

13. A table of values for the function f(x) is given below. Use the table to determine $f^{-1}(4)$.

x	-2	0	2	4	6	8	10	12	14
f(x)	1	2	2.5	3	3.9	4	5	7	11

If f(g)=4, then f'(4)=814. Solve the inequality $x^2 - 81 \le 0$. Give your answer in interval notation.

 $x^{2} \le 81$

 $-9 \leq X \leq 9$

15. Determine the domain of $f(x) = \ln(2x+1)$. Give your answer in interval notation.

We need

2x+170

So X7 - 4

16. In the triangle below, $\cos \theta = \frac{3}{7}$. Determine $\sin \theta$.

 $\left(\frac{1}{2}\right) Q$

Sint=

8

Sketch graphs of the following functions. Label the *x*- and *y*-intercepts, if they exist. Draw in any asymptotes using dashed lines, and write the equation of the asymptote, if it exists.

20. Given the graph of f(x) below, draw the graph of -2f(x).

