Name (printed legibly): \square Solutions
Directions: The quiz contains 20 problems, and each problem is worth one point. Place your answer in the blank provided. For graphing questions, a set of axes are provided. Calculators are not allowed.
For this quiz only, no partial credit will be given.
DUE: Friday Sept 13 at the beginning of class.

1. Evaluate $16^{-3 / 4}$.

$$
16^{-3 / 4}=\frac{1}{16^{3 / 4}}=\frac{1}{2^{3}}=\frac{1}{8}
$$

2. Find the exact value of $\log _{5}\left(\frac{1}{25}\right)$.

$$
\log _{5} 5^{-2}=-2
$$

3. Find the exact value of $\tan \left(\frac{5 \pi}{6}\right)$.

4. Simplify the expression $\left(\frac{x^{4} y}{3 x^{6} y^{4 / 5}}\right)^{2}$. Write your answer without negative exponents.

5. Write an equation in slope-intercept form $y=m x+b$ for the line that passes through the points $(10,-2)$ and $(-4,6)$.

$$
\begin{array}{ll}
m=\frac{6-(-2)}{-4-10}=\frac{8}{-14}=\frac{-4}{7} & y=\frac{-4}{7} x+\frac{26}{7} \\
y-6=\frac{-4}{7}(x+4)=\frac{4}{7} x-\frac{16}{7} . & \text { So } y=\frac{-4}{7} x-\frac{16}{7}+\frac{42}{7}=\frac{4}{7} x+\frac{26}{7}
\end{array}
$$

6. Expand and simplify $x(4+2 x)-(3-x)^{2}$.

$$
\begin{aligned}
& 4 x+2 x^{2}-\left(9-6 x+x^{2}\right) \\
= & 4 x+2 x^{2}-9+6 x-x^{2} \\
= & x^{2}+10 x-9
\end{aligned}
$$

$$
x^{2}+10 x-9
$$

7. Use the graph of $f(x)$ below to estimate the values) of x such that $f(x)=3$.

$$
x=-3,0,3
$$

8. For the function $f(x)=\frac{8}{x}$, find the expression $f(4+h)-f(4)$. Simplify your answer and write your answer as a single fraction.

$$
\begin{aligned}
f(4+h) & -f(4)=\frac{8}{41+h}-\frac{8}{4}=\frac{8 \cdot 4-8(4+h)}{4(4+h)} \\
& =\frac{-8 h}{4(4+h)}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{-8 h}{4(4+h)}=\frac{-8 h}{16+4 h} \\
& =\frac{-2}{4+h}
\end{aligned}
$$

9. Given the piecewise defined function below, determine the values) of x such that $f(x)=12$.
10. Solve for x in the equation $2 x^{2}=15-7 x$.

$$
\begin{gathered}
2 x^{2}+7 x-15=0 \\
(2 x-3)(x+5)=0 \\
x=3 / 2 \text { or } x=-5
\end{gathered}
$$

$$
x=3 / 2 \text { or } x=-5
$$

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{ll}
3 x+1 & x<0 \\
x^{5} & x \geq 0
\end{array} .\right. \\
& x<0 \text { : } 3 x+1=12 \text { or } x=1 / 3 \leq \text { Nile negefine. } x=(12)^{5}=\sqrt[5]{12} \\
& x \geqslant 0, x^{5}=12 \text { or } x=(12)^{25} \text { od } ل
\end{aligned}
$$

$$
\begin{aligned}
& \text { 11. Solve for } x \text { in the equation } 3 e^{1-x}=4 \\
& \begin{array}{l}
1-x \\
e^{1-x}=\frac{4}{3} \\
1-x=\ln (4 / 3
\end{array}
\end{aligned} \quad \begin{aligned}
x & =1-\ln \left(\frac{4}{3}\right) \\
& =1+\ln \left(\frac{3}{4}\right) \\
& =1+\ln 3-\ln 4
\end{aligned} \quad x=1-\ln (4 / 3)
$$

12. Find all solutions to the equation $1+2 \sin (\theta)=0$ in the interval $[0,2 \pi]$.
$1+2 \sin \theta=0$ or

$$
\sin \theta=\frac{-1}{2}
$$

$$
\theta=\frac{7 \pi}{6} \text { or } \theta=\frac{11 \pi}{6}
$$

13. A table of values for the function $f(x)$ is given below. Use the table to determine $f^{-1}(4)$.

x	-2	0	2	4	6	8	10	12	14
$f(x)$	1	2	2.5	3	3.9	4	5	7	11

$$
8
$$

If $f(8)=4$, then $f^{-1}(4)=8$
14. Solve the inequality $x^{2}-81 \leq 0$. Give your answer in interval notation.

$$
\begin{array}{r}
x^{2} \leq 81 \\
-9 \leq x \leq 9
\end{array}
$$

15. Determine the domain of $f(x)=\ln (2 x+1)$. Give your answer in interval notation.

We need

$$
\left(-\frac{1}{2}, \infty\right)
$$

$$
2 x+1>0
$$

So $x>-1 / 2$
16. In the triangle below, $\cos \theta=\frac{3}{7}$. Determine $\sin \theta$.

$$
\begin{aligned}
\triangle P P & =\sqrt{49-9} \\
& =\sqrt{40} \\
& =2 \sqrt{10} \quad \sin \theta=\frac{2 \sqrt{10}}{7}
\end{aligned}
$$

Sketch graphs of the following functions. Label the x - and y-intercepts, if they exist. Draw in any asymptotes using dashed lines, and write the equation of the asymptote, if it exists.
17. $f(x)=x^{3}-1$

18. $f(x)=1-e^{x}$

19. $y=\sin (x)$ on the interval $[-\pi, 3 \pi]$

20. Given the graph of $f(x)$ below, draw the graph of $-2 f(x)$.

