MATH F251 Calculus I Quiz 1

Name (printed legibly): Solutions

Directions: The quiz contains 20 problems, and each problem is worth one point. Place your answer in the blank provided to the right. For graphing questions, a set of axes are provided. **Calculators are not allowed.**

For this quiz only, no partial credit will be given.

- 1. Evaluate $8^{-2/3}$. You should have no exponents in your final answer.
- 1/4 $8^{-2/3} = \frac{1}{8^{2/3}} = \frac{1}{(8'3)^2} = \frac{1}{2^2} = \frac{1}{4}$ 2. Find the exact value of $\log_{10}\left(\frac{1}{10000}\right)$. $\frac{1}{10000} = 10^{-4} \text{ so } \log(10^{-4}) = -4$ 3. Find the exact value of $es(2\pi/3)$. Sin $\left(\frac{3\pi}{4}\right)$ 4. Simplify the expression $\left(\frac{3xy}{x^4v^{7/2}}\right)^2$. Write your answer without negative exponents. $\left(\frac{3xy}{x^{4}y^{7/2}}\right)^{2} = \frac{9x^{2}y^{2}}{x^{8}y^{7}}$ $= 9x^{-6}y^{-5} = \frac{9}{x^{6}y^{5}}$
- 5. Write an equation in slope-intercept form (that is, in the form y = mx + b) for the line that passes through the points (-2,7) and (3,-9).

Slope =
$$\frac{-9-7}{3-(-2)} = \frac{-16}{5}$$
 $y = \frac{-16}{5} \times + \frac{32}{5}$
 $y = \frac{-16}{5} (x + 2) + 7 = -\frac{16}{5} \times -\frac{32}{5} + \frac{35}{5} = -\frac{16}{5} \times + \frac{3}{5}$

Quiz 1

6. Expand and simplify $(4x+2)^2 - 8(x-1)$. $(4x+2)^2 - 8(x-1) = 16x^2 + 16x + 4 - 8x + 8$ $= 16x^2 + 8x + 12$ $= 16x^2 + 8x + 12$

7. Use the graph of f(x) below to estimate the value(s) of x such that f(x) = 2.

 $\chi = 4, \quad \chi = -1$

X = 4 or x = -2

- 8. For the function $f(x) = \frac{5}{x}$, find the expression f(12+h) f(12). Simplify your answer and write your answer as a single fraction.
- $f(12+h) f(12) = \frac{5}{12+h} \frac{5}{12} \qquad \frac{-5h}{144+12h}$ $= \frac{5(12) 5(12+h)}{(12+h)(12)} = \frac{60 60 5h}{144+12h} = \frac{-5h}{144+12h}$
 - 9. Given the piecewise defined function below, determine the value(s) of x such that f(x) = -27.
- $f(x) = \begin{cases} 2x-5 & x < 0 \\ x^3 & x \ge 0 \end{cases}$ Note $X^3 \not\ge 0$ when $X \not\ge 0$ so X = -11the only solution is in the 2x-5 branch. So $2x-5 = -27 \implies 2x = -27+5 = -22 \implies x = -11$ 10. Solve for x in the equation $x^2 - 2x = 8$.

$$\begin{array}{rcl} x^{2} - 2x - 8 = 0 \implies \\ (x - 4)(x + 2) = 0 \\ x = 4 \ or \ x = -2 \end{array}$$

 $X = \frac{1}{5} (ln(1/3) - 2)$

 $= \frac{2}{5} - \frac{\ln(1/5)}{5}$ $= \frac{2}{5} + \frac{\ln(3)}{5}$

 $\theta = \frac{\pi}{3} \propto \theta = \frac{5\pi}{3}$

11. Solve for *x* exactly in the equation $e^{2-5x} = \frac{1}{3}$.

- $e^{2-5x} = \frac{1}{3}$ 2-5x = ln(1/3) = 7 - 5x = ln(1/3) - 2
- 12. Find all solutions to the equation $2\cos(\theta) = 1$ in the interval $[0, 2\pi]$.

13. A table of values for the function f(x) is given below. Use the table to determine $f^{-1}(5)$.

Quiz 1

 $= = = = (h_1(1/2) - 2)$

- 14. Solve the inequality $9 x^2 \le 0$. Give your answer in interval notation.
 - $(3-x)(3+x) \leq 0 \implies (-\infty, -3] \cup [3,\infty)$ $3-x \leq 0 \implies 37x \quad or \quad 3+x \leq 0 \implies x \leq -3$
- 15. Determine the domain of $f(x) = \ln(x-4)$. Give your answer in interval notation.

lr(*) has domain (0, 2) <u> (4</u>,∞) So ln (x-4) has domain (4,00)

16. In the triangle below, $\sin \theta = \frac{1}{5}$. Determine $\cos \theta$.

Sketch graphs of the following functions. Label the *x*- and *y*-intercepts, if they exist. Draw in any asymptotes using dashed lines, and write the equation of the asymptote, if it exists.

20. Given the graph of f(x) below, draw the graph of -2f(x). flip $\int \frac{1}{2} \int \frac{$

