Name (printed legibly): \square
Solutions
Directions: The quiz contains 20 problems, and each problem is worth one point. Place your answer in the blank provided to the right. For graphing questions, a set of axes are provided. Calculators are not allowed.
For this quiz only, no partial credit will be given.

1. Evaluate $8^{-2 / 3}$. You should have no exponents in your final answer.

$$
8^{-2 / 3}=\frac{1}{8^{2 / 3}}=\frac{1}{\left(8^{1 / 3}\right)^{2}}=\frac{1}{2^{2}}=\frac{1}{4}
$$

2. Find the exact value of $\log _{10}\left(\frac{1}{10000}\right)$.

$$
\frac{1}{10000}=10^{-4} \text { so } \log _{10}\left(10^{-4}\right)=-4
$$

3. Find the exact value of $(2 \pi / 2) \cdot \sin \left(\frac{3 \pi}{4}\right)$

4. Simplify the expression $\left(\frac{3 x y}{x^{4} y^{7 / 2}}\right)^{2}$. Write your answer without negative exponents.

$$
\begin{aligned}
\left(\frac{3 x y}{x^{4} y^{7 / 2}}\right)^{2} & =\frac{9 x^{2} y^{2}}{x^{8} y^{7}} \\
& =9 x^{-6} y^{-5}=\frac{9}{x^{6} y^{5}}
\end{aligned}
$$

5. Write an equation in slope-intercept form (that is, in the form $y=m x+b$) for the line that passes through the points $(-2,7)$ and $(3,-9)$.

$$
\begin{array}{ll}
\text { slope }=\frac{-9-7}{3-(-2)}=\frac{-16}{5} & y=\frac{-16}{5} x+3 / 5 \\
y=\frac{-16}{5}(x+2)+7=\frac{-16}{5} x-\frac{32}{5}+\frac{35}{5}=\frac{-16}{5} x+3 / 5
\end{array}
$$

6. Expand and simplify $(4 x+2)^{2}-8(x-1)$.

$$
\begin{aligned}
(4 x+2)^{2}-8(x-1) & =16 x^{2}+16 x+4-8 x+8 \quad 16 x^{2}+8 x+12 \\
& =16 x^{2}+8 x+12
\end{aligned}
$$

7. Use the graph of $f(x)$ below to estimate the values) of x such that $f(x)=2$.

8. For the function $f(x)=\frac{5}{x}$, find the expression $f(12+h)-f(12)$. Simplify your answer and write your answer as a single fraction.

$$
\begin{aligned}
& f(12+h)-f(12)=\frac{5}{12+h}-\frac{5}{12} \\
& =\frac{5(12)-5(12+h)}{(12+h)(12)}=\frac{60-60-54}{144+12 h}=\frac{-54}{144+124}
\end{aligned}
$$

$$
\frac{-5 h}{144+12 h}
$$

9. Given the piecewise defined function below, determine the values) of x such that $f(x)=-27$.

$$
f(x)= \begin{cases}2 x-5 & x<0 \\ x^{3} & x \geq 0\end{cases}
$$

Note $x^{3} \geqslant 0$ when $x \geqslant 0$ so
he only solution is in the $2 x-5$ branch.

$$
\text { So } 2 x-5=-27 \Rightarrow 2 x=-27+5=-22 \Rightarrow x=-11
$$

10. Solve for x in the equation $x^{2}-2 x=8$.

$$
\begin{gathered}
x^{2}-2 x-8=0 \Rightarrow \\
(x-4)(x+2)=0 \\
x=4 \text { or } x=-2
\end{gathered}
$$

11. Solve for x exactly in the equation $e^{2-5 x}=\frac{1}{3}$.

$$
e^{2-5 x}=\frac{1}{3}
$$

$$
2-5 x=\ln (1 / 3) \Rightarrow-5 x=\ln (1 / 3)-2
$$

$$
\begin{aligned}
x & =-\frac{1}{5}(\ln (1 / 3)-2) \\
& =\frac{2}{5}-\frac{\ln (1 / 3)}{5}
\end{aligned}
$$

$$
\Rightarrow x=\frac{-1}{5}(\ln (1 / 3)-2)=2 / 5+\frac{\ln (3)}{5}
$$

12. Find all solutions to the equation $2 \cos (\theta)=1$ in the interval $[0,2 \pi]$.

13. A table of values for the function $f(x)$ is given below. Use the table to determine $f^{-1}(5)$.

x	-5	0	5	10	15	20	25	30	35
$f(x)$	40	33	18	10	-4	6	5	-2	$-1 / 2$

$$
f^{-1}(5)=25
$$

$$
f(25)=5 \Rightarrow f^{-1}(5)=25
$$

14. Solve the inequality $9-x^{2} \leq 0$. Give your answer in interval notation.

$$
\begin{aligned}
& (3-x)(3+x) \leq 0 \quad \Rightarrow \quad \frac{(-\infty,-3] \cup[3, \infty)}{3-x \leq 0 \Rightarrow 3 \geqslant x} \text { or } 3+x \leq 0 \Rightarrow x \leq-3
\end{aligned}
$$

15. Determine the domain of $f(x)=\ln (x-4)$. Give your answer in interval notation.

$$
h(*) \text { has domain }(0, \infty)
$$

\qquad So $\ln (x-4)$ has domain $(4, \infty)$
16. In the triangle below, $\sin \theta=\frac{1}{5}$. Determine $\cos \theta$.

$$
\sqrt{5^{2}-1^{2}}=
$$

$$
1 \quad \sqrt{24}=2 \sqrt{6}
$$

$$
\cos \theta=\frac{2 \sqrt{4}}{5}
$$

Sketch graphs of the following functions. Label the x - and y-intercepts, if they exist. Draw in any asymptotes using dashed lines, and write the equation of the asymptote, if it exists.
17. $f(x)=(x+1)^{3}$

18. $f(x)=1+e^{x}$

shift $?$ by 1
19. $y=\cos (x)$ on the interval $[-2 \pi, 2 \pi]$

20. Given the graph of $f(x)$ below, draw the graph of $-2 f(x)$. flip \hat{f} scale by ${ }^{2}$

