Name (printed legibly): \square
Directions: The quiz contains 20 problems, and each problem is worth one point. Place your answer in the blank provided to the right. For graphing questions, a set of axes are provided. Calculators are not allowed.

For this quiz only, no partial credit will be given.

1. Evaluate $8^{-2 / 3}$. You should have no exponents in your final answer.
2. Find the exact value of $\log _{10}\left(\frac{1}{10000}\right)$.
3. Find the exact value of $\sin \left(\frac{3 \pi}{4}\right)$.
4. Simplify the expression $\left(\frac{3 x y}{x^{4} y^{7 / 2}}\right)^{2}$. Write your answer without negative exponents.
5. Write an equation in slope-intercept form (that is, in the form $y=m x+b$) for the line that passes through the points $(-2,7)$ and $(3,-9)$.
6. Expand and simplify $(4 x+2)^{2}-8(x-1)$.
7. Use the graph of $f(x)$ below to estimate the value(s) of x such that $f(x)=2$.

8. For the function $f(x)=\frac{5}{x}$, find the expression $f(12+h)-f(12)$. Simplify your answer and write your answer as a single fraction.
9. Given the piecewise defined function below, determine the value(s) of x such that $f(x)=-27$.

$$
f(x)=\left\{\begin{array}{ll}
2 x-5 & x<0 \\
x^{3} & x \geq 0
\end{array} .\right.
$$

10. Solve for x in the equation $x^{2}-2 x=8$.
11. Solve for x exactly in the equation $e^{2-5 x}=\frac{1}{3}$.
12. Find all solutions to the equation $2 \cos (\theta)=1$ in the interval $[0,2 \pi]$.
13. A table of values for the function $f(x)$ is given below. Use the table to determine $f^{-1}(5)$.

x	-5	0	5	10	15	20	25	30	35
$f(x)$	40	33	18	10	-4	6	5	-2	$-1 / 2$

14. Solve the inequality $9-x^{2} \leq 0$. Give your answer in interval notation.
15. Determine the domain of $f(x)=\ln (x-3)$. Give your answer in interval notation.
16. In the triangle below, $\sin \theta=\frac{1}{5}$. Determine $\cos \theta$.

Sketch graphs of the following functions. Label the x - and y-intercepts, if they exist. Draw in any asymptotes using dashed lines, and write the equation of the asymptote, if it exists.
17. $f(x)=(x+1)^{3}$

18. $f(x)=1+e^{x}$

19. $y=\cos (x)$ on the interval $[-2 \pi, 2 \pi]$

20. Given the graph of $f(x)$ below, draw the graph of $-2 f(x)$.

