\qquad

20 points possible. No aids (book, calculator, etc.) are permitted. You need not simplify unless asked, but show all work and use proper notation for full credit.

1. [5 points] Determine a function that satisfies the following constraints:

$$
f^{\prime \prime}(x)=12 x^{2}+\frac{6}{\sqrt{x}}, \quad f^{\prime}(0)=2, \quad f(1)=4
$$

Clearly show your work.

$$
\begin{aligned}
& f^{\prime}(x)=\int f^{\prime \prime}(x) d x=\int\left(12 x^{2}+\frac{6}{\sqrt{x}}\right) d x=4 x^{3}+12 \sqrt{x}+C_{1} \\
& f^{\prime}(0)=2 \Rightarrow f^{\prime}(0)=4 \cdot 0+12 \cdot 0+c_{1}=2 \Rightarrow C_{1}=2 \\
& f^{\prime}(x)=4 x^{3}+12 \sqrt{x}+2 \\
& f(x)=\int f^{\prime}(x) d x=\int\left(4 x^{3}+12 \sqrt{x}+2\right) d x=x^{4}+8 x^{3 / 2}+2 x+C_{2} \\
& f(1)=4 \Rightarrow 1+8+2+c_{2}=4 \Rightarrow c_{2}=-7 \\
& f(x)=x^{4}+8 x^{3 / 2}+2 x-7
\end{aligned}
$$

2. [6 points] Compute the following integrals. Show your work.
a. $\int_{0}^{\pi / 6} \frac{\sin (x)}{8}+x d x=\frac{1}{8} \int_{0}^{\frac{\pi}{6}} \sin (x) d x+\int_{0}^{\frac{\pi}{6}} x d x=\left.\frac{1}{8}(-\cos x)\right|_{0} ^{\frac{\pi}{6}}+\left.\frac{x^{2}}{2}\right|_{0} ^{\frac{\pi}{6}}=$

$$
=\frac{1}{8} \cdot\left(-\frac{\sqrt{3}}{2}\right)+\frac{1}{8}+\frac{\pi^{2}}{72}=\frac{1}{8}-\frac{\sqrt{3}}{16}+\frac{\pi^{2}}{72}
$$

b. $\int \frac{3-t e^{t}}{t} d t=\int \frac{3}{t} d t-\int e^{t} d t=3 \ln |t|-e^{t}+C$
3. [1 points] If $g(x)=\int_{3}^{x} \ln \left(t^{2}\right) d t$, find $g^{\prime}(2)$.

Bu FTC party 1, $\quad g^{\prime}(x)=\ln \left(x^{2}\right)$
Then $\quad g^{\prime}(2)=\ln \left(2^{2}\right)=\ln (4)$
4. [2 points] Find the derivative of the function $F(x)=\int_{4}^{\ln (x)} \tan (t) \sqrt{3 t^{5}-2} d t$.

$$
\begin{aligned}
F^{\prime}(x) & =\tan (\ln (x)) \sqrt{3(\ln (x))^{5}-2} \cdot(\ln (x))^{\prime}= \\
& =\tan (\ln (x)) \sqrt{3(\ln (x))^{5}-2} \cdot \frac{1}{x}
\end{aligned}
$$

5. [4 points] Find the exact value of the area shaded below. The thick curve is $f(x)=\frac{1}{\sqrt{1-x^{2}}}$. Show your work and simplify your answer.

Use a definite integral:

$$
\begin{aligned}
& A=\int_{-\frac{1}{2}}^{\frac{1}{2}} f(x) d x=\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{\sqrt{1-x^{2}}} d x=\left.\arcsin (x)\right|_{-\frac{1}{2}} ^{\frac{1}{2}}= \\
& =\arcsin \left(\frac{1}{2}\right)+\arcsin \left(\frac{1}{2}\right)=\frac{\pi}{6}+\frac{\pi}{6}=\frac{\pi}{3}
\end{aligned}
$$

6. [2 points] Suppose $r(t)$ is the rate of change of the number of positive cases of COVID-19 in Alaska, measured in cases per month (computed on the last day of the month, say), where $t=0$ is March 2020.
a. What does $\int_{6}^{8} r(t) d t$ measure? Use complete sentences.

Let $N(x)$ be a number of positive cases of Covid-19
Then $r(t)=\frac{d N}{d t}$. Hence, by the Net Change Theorem we have $\int_{6}^{8} r(t) d t=N(8)-N(6)$ represents the change in number of pos. cases from September 2020 until November 2020
b. Is it possible for $\int_{a}^{b} r(t) d t$, where $a<b$ and $a, b \geq 0$, to be a negative number? Why or why not? By the Net Change Theorem,

