20 points possible. No aids (book, calculator, etc.) are permitted. You need not simplify unless asked, but show all work and use proper notation for full credit.

1. [5 points] Determine a function that satisfies the following constraints:

$$
f^{\prime \prime}(x)=12 x^{2}+\frac{6}{\sqrt{x}}, \quad f^{\prime}(0)=2, \quad f(1)=4
$$

Clearly show your work.
2. [6 points] Compute the following integrals. Show your work.
a. $\int_{0}^{\pi / 6} \frac{\sin (x)}{8}+x d x$
b. $\int \frac{3-t e^{t}}{t} d t$
3. [1 points] If $g(x)=\int_{3}^{x} \ln \left(t^{2}\right) d t$, find $g^{\prime}(2)$.
4. [2 points] Find the derivative of the function $F(x)=\int_{4}^{\ln (x)} \tan (t) \sqrt{3 t^{5}-2} d t$.
5. [4 points] Find the exact value of the area shaded below. The thick curve is $f(x)=\frac{1}{\sqrt{1-x^{2}}}$. Show your work and simplify your answer.

6. [2 points] Suppose $r(t)$ is the rate of change of the number of positive cases of COVID-19 in Alaska, measured in cases per month (computed on the last day of the month, say), where $t=0$ is March 2020.
a. What does $\int_{6}^{8} r(t) d t$ measure? Use complete sentences.
b. Is it possible for $\int_{a}^{b} r(t) d t$, where $a<b$ and $a, b \geq 0$, to be a negative number? Why or why not?

