Name: \qquad / 20
There are 20 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [8 points] Use the graph of the function of $f(x)$ to answer the following questions. If a value does not exist, write DNE.

a. $f(-3)=5$
b. $f(1)=1$
c. $\lim _{x \rightarrow-3^{-}} f(x)=-\infty$
d. $\lim _{x \rightarrow-3^{+}} f(x)=\underline{5}$
e. $\lim _{x \rightarrow-3} f(x)=$ DOE
f. $\lim _{x \rightarrow 1} f(x)=3$
g. $\lim _{x \rightarrow-6} f(x)=2$
h. $\lim _{x \rightarrow 5^{+}} f(x)=\square$
2. [2 points] The table below shows total active COVID cases in the Fairbanks North Star Borough over the 8 weeks ending 8/31/2020 (number of active cases measured on Mondays).

date	$7 / 13$	$7 / 20$	$7 / 27$	$8 / 3$	$8 / 10$	$8 / 17$	$8 / 24$	$8 / 31$
t (week)	0	1	2	3	4	5	6	7
C (\# of cases)	146	167	192	215	238	275	332	409

a. What was the average rate of change in the number of cases over the $\& \frac{7}{8}$ weeks? Show your work.
average rate of change $=\frac{\Delta C}{\Delta t}=\frac{C\left(t_{7}\right)-C\left(t_{0}\right)}{t_{7}-t_{0}}$

$$
\frac{\Delta C}{\Delta t}=409-146
$$

$$
\frac{\Delta c}{\Delta t}=\frac{409-146}{7} \approx 37.57 \text { (\# of cases/ week) }
$$

b. What was the average rate of change in the number of cases between weeks 2 and 5? Show your work.
average rate of change $=\frac{c\left(t_{5}\right)-C\left(t_{2}\right)}{t_{5}-t_{2}}=\frac{275-192}{3}$
Δc
Δt
3. [6 points] Compute the following infinite limits. For each limit, justify your answer with a sentence or two, perhaps with a rough sketch. An answer with no justification will not receive full credit.

b. $\lim _{x \rightarrow 3^{+}} 18 \ln (x-3)=-\infty$

$$
\lim _{x \rightarrow 3^{+}} 18 \ln (x-3)=18 \lim _{x \rightarrow 3^{+}} \ln (x-3)
$$

4. [4 points] On the axes below, sketch the graph of the function

$$
f(x)= \begin{cases}1-x^{2} & x<0 \\ 4 & x=0 \\ 3-x & x>0\end{cases}
$$

Then compute, with brief justification, the requested values in the table. An answer with no justifrication will not receive full credit.

Value	Justification
$f(0)=$	Based on the definition of $f(x)$, this function is defined at $x=0$ and $f(0)=4$
$\lim _{x \rightarrow 0^{-}} f(x)=$	One-sided limit exists. As x is approaching 0 from the left, the value of f is getting
$\lim _{x \rightarrow 0} f(x)=\|$$\operatorname{loser}^{2}$ to 1. $\lim _{x \rightarrow 0} f(x)$ DNE since $\lim _{x \rightarrow 0^{+}} f(x) \neq \lim _{x \rightarrow 0^{-}} f(x)$ $3^{\prime \prime}$ 1	
$\mathrm{~V}-1$	

