There are 20 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [8 points] Use the graph of the function of f(x) to answer the following questions. If a value does not exist, write DNE.



**a.** 
$$f(-3) = 5$$

**b**. 
$$f(1) = 1$$

**c.** 
$$\lim_{x \to x^{2}} f(x) =$$

**d.** 
$$\lim_{x \to -3^+} f(x) = 5$$

c. 
$$\lim_{x \to -3^{-}} f(x) = \underline{\hspace{1cm}}$$
 d.  $\lim_{x \to -3^{+}} f(x) = \underline{\hspace{1cm}}$  e.  $\lim_{x \to -3} f(x) = \underline{\hspace{1cm}}$  f.  $\lim_{x \to 1} f(x) = \underline{\hspace{1cm}}$  g.  $\lim_{x \to -6} f(x) = \underline{\hspace{1cm}}$  h.  $\lim_{x \to 5^{+}} f(x) = \underline{\hspace{1cm}}$ 

**f.** 
$$\lim_{x \to 1} f(x) =$$

**g**. 
$$\lim_{x \to -6} f(x) = 2$$

**h**. 
$$\lim_{x \to 5^+} f(x) =$$
\_\_\_\_\_

2. [2 points] The table below shows total active COVID cases in the Fairbanks North Star Borough over the 8 weeks ending 8/31/2020 (number of active cases measured on Mondays).

| date           | 7/13 | 7/20 | 7/27 | 8/3 | 8/10 | 8/17 | 8/24 | 8/31 |
|----------------|------|------|------|-----|------|------|------|------|
| t (week)       | 0    | 1    | 2    | 3   | 4    | 5    | 6    | 7    |
| C (# of cases) | 146  | 167  | 192  | 215 | 238  | 275  | 332  | 409  |

a. What was the average rate of change in the number of cases over the 8 weeks? Show your

Overage rate of change = 
$$\frac{\Delta C}{\Delta t} = \frac{C(t_7) - C(t_0)}{t_7 - t_0}$$
  
 $\frac{\Delta C}{\Delta t} = \frac{409 - 146}{7} \approx 37.57 \text{ (# of cases/week)}$ 

**b**. What was the average rate of change in the number of cases between weeks 2 and 5? Show your work.

overage rate of change = 
$$\frac{C(t_s)-C(t_2)}{\Delta t} = \frac{275-197}{3}$$
  
UAF Calculus I  $\frac{\Delta C}{\Delta t} \approx 27.71 (\# \text{ of cases/week})$ 

**3. [6 points]** Compute the following infinite limits. For each limit, justify your answer with a sentence or two, perhaps with a rough sketch. An answer with no justification will not receive full



6=4  $x_1=6.9=5$   $x_1-x_0=-0.1$   $x_2=6.99=5$   $x_3-x_0=-0.001$   $x_3=6.999=5$   $x_4=6.999=5$   $x_4=6.999=5$ 

- **b.**  $\lim_{x \to 3^+} 18 \ln(x 3) =$ 
  - lim 18 lu(x-3)= 13 lim lu(x-3) x-3 3+ 18 lu(x-3)= 13 lim lu(x-3)
- **4. [4 points]** On the axes below, sketch the graph of the function

$$f(x) = \begin{cases} 1 - x^2 & x < 0 \\ 4 & x = 0 \\ 3 - x & x > 0. \end{cases}$$

Then compute, with brief justification, the requested values in the table. An answer with no justification will not receive full credit.



|   | Value                     | Justification                                     |
|---|---------------------------|---------------------------------------------------|
|   | f(0) =                    | Based on the definition                           |
|   | l.                        | of f(x), this function is defined at x=0 and f(0) |
|   | 4                         | is defined at x=0 and f(0)                        |
|   | $\lim_{x \to 0^-} f(x) =$ | One-sided limit exists.                           |
|   | <i>x</i> →0               | As x is approaching of from the left,             |
|   | 1                         | o from the left,                                  |
|   |                           | the value of f is getting eloser to 1.            |
|   | $\lim f(x) =$             |                                                   |
|   | $\lim_{x \to 0} f(x) =$   | lim fa DNE since                                  |
|   | DNE                       | lim f(x) ≠ lim f(x)                               |
| • |                           | X+0+ X-0                                          |
| 2 |                           | 2 " 4" V-1                                        |