Name: \qquad
There are 20 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [8 points] Use the graph of the function of $f(x)$ to answer the following questions. If a value does not exist, write DNE.

a. $f(-3)=$
b. $f(1)=$ \qquad
c. $\lim _{x \rightarrow-3^{-}} f(x)=$ \qquad
d. $\lim _{x \rightarrow-3^{+}} f(x)=$ \qquad
e. $\lim _{x \rightarrow-3} f(x)=$ \qquad
f. $\lim _{x \rightarrow 1} f(x)=$ \qquad
g. $\lim _{x \rightarrow-6} f(x)=$ \qquad
h. $\lim _{x \rightarrow 5^{+}} f(x)=$ \qquad
2. [2 points] The table below shows total active COVID cases in the Fairbanks North Star Borough over the time period between 7/13/2020 and 8/31/2020 (number of active cases measured on Mondays).

date	$7 / 13$	$7 / 20$	$7 / 27$	$8 / 3$	$8 / 10$	$8 / 17$	$8 / 24$	$8 / 31$
t (week)	0	1	2	3	4	5	6	7
C (\# of cases)	146	167	192	215	238	275	332	409

a. What was the average rate of change in the number of cases over the 7 weeks? Show your work and include correct units in your answer.
b. What was the average rate of change in the number of cases from week 2 to week 5 ? Show your work and include correct units in your answer.
3. [6 points] Compute the following infinite limits. For each limit, justify your answer with a sentence or two, perhaps with a rough sketch. An answer with no justification will not receive full credit.
a. $\lim _{x \rightarrow 7^{-}} \frac{x^{2}-6}{x-7}=\square$
b. $\lim _{x \rightarrow 3^{+}} 18 \ln (x-3)=\square$
4. [4 points] On the axes below, sketch the graph of the function

$$
f(x)= \begin{cases}1-x^{2} & x<0 \\ 4 & x=0 \\ 3-x & x>0\end{cases}
$$

Then compute, with brief justification, the requested values in the table. An answer with no justification will not receive full credit.

Value	Justification
$f(0)=$	
$\lim _{x \rightarrow 0^{-}} f(x)=$	
$\lim _{x \rightarrow 0} f(x)=$	

