Name: \qquad
\qquad
There are 20 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [4 points]
a. Why is the following not a true statement? $\frac{x^{2}+x-6}{x-2}=x+3$ The statement is false since $x-2$
the domain of $f(x)=\frac{x^{2}+x-6}{x-2}$ is $(-\infty, 2) \cup(2, \infty)$ and the domain of $g(x)=x+3$ is $I R_{1}$ in ocher words, for $x=2$ the left is undefined and the right is 5 .
b. Nevertheless, explain why the following equation is correct. $\lim _{x \rightarrow 2} \frac{x^{2}+x-6}{x-2}=\lim _{x \rightarrow 2}(x+3)$ The limit does not care what happens precisely at $x=2$. The functions are the same for all other values.
2. [4 points] Compute the limit, if it exists. If the limit does not exist, explain why.

$$
\lim _{h \rightarrow 0} \frac{\sqrt{9+h}-3}{h}=\frac{3-3}{0}=\frac{0}{0}
$$

Need to do some algebra:

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{\sqrt{9+h}-3}{h}=\lim _{h \rightarrow 0} \frac{(\sqrt{9+h}-3)(\sqrt{9+h}+3)}{h(\sqrt{9+h}+3)}=\lim _{h \rightarrow 0} \frac{\alpha+h-\alpha}{h(\sqrt{9+h}+3)}= \\
& =\lim _{h \rightarrow 0} \frac{h}{h(\sqrt{9+h}+3)}=\frac{1}{3+3}=\frac{1}{6}
\end{aligned}
$$

3. [4 points] Compute the limit, if it exists. If the limit does not exist, explain why.

$$
\lim _{x \rightarrow 6} \frac{2 x-12}{x-6}
$$

Have to deal at first with $f(x)=|x-6|$, when $x \rightarrow 6^{-}$

Hence

$$
\lim _{x \rightarrow 6^{-}} \frac{2 x-12}{-x+6}=\lim _{x \rightarrow 6^{-}} \frac{2(x-6)}{-(x-6)}=-2
$$

4. [4 points] Consider the function $f(x)= \begin{cases}x^{2} & x<-1 \\ x & -1 \leq x<1 \\ -\cos (\pi x) & x \geq 1\end{cases}$
a. In the diagram below, graph $f(x)$.

b. Determine whether or not $f(x)$ is continuous at $x=-1$ and explain your answer. You must use the definition of continuity in your explanation.
Def. Function $f(x)$ is continuous at $x=a$ if

$$
\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{-}} f(x)=f(a)
$$

We see that $\lim _{x \rightarrow-1^{+}} f(x)=-1 \neq \lim _{x \rightarrow-1^{-}} f(x)=1$. Hence, $f(x)$ is not
5. [4 points] Use the Intermediate Value Theorem to justify the claim that there exists a number x in the interval $(0,-2)$ satisfying $x e^{x}=x^{2}-1$. Explain your answer.

$$
x e^{x}-x^{2}+1=0
$$

Let $f(x)=x e^{x}-x^{2}+1$.

- $f(x)$ is continuous on $[0,-2]$ since it is a linear combination of continuous functions.
We cheek that
- $f(0)=1>0$
- $f(-2)=-2 \cdot \frac{1}{e^{2}}-4+1<0$

Then there exists a number
c in $(-2,0)$ such that $f(c)=0$,

where c in $(-2,0)$ in other words, c is a solution of $c \cdot e^{c}=c^{2}-1$.

