Name: \qquad Solutions
/ 20
There are 20 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [8 points] For each function below, find its derivative. You do not need to simplify your answer.
a. $h(t)=\frac{2}{t^{2}}+\frac{t^{2}}{2}=2 t^{-2}+\frac{1}{2} t^{2}$

$$
h^{\prime}(t)=2(-2) t^{-3}+\frac{1}{2}(2 t)
$$

b. $f(x)=\frac{2 \sqrt{x}}{3}-x^{e}+\sqrt{2}=\frac{2}{3} x^{1 / 2}-x^{e}+\sqrt{2}$

$$
f^{\prime}(x)=\frac{2}{3}\left(\frac{1}{2}\right) x^{-1 / 2}-e x^{e-1}
$$

c. $g(x)=x^{2 / 3}\left(e^{x}-1\right)$

$$
g^{\prime}(x)=x^{2 / 3}\left(e^{x}\right)+\left(e^{x}-1\right)\left(\frac{2}{3} x^{-1 / 3}\right)
$$

d. $y=\frac{2 x^{3}-3}{x^{2}-x}$

$$
y^{\prime}=\frac{\left(x^{2}-x\right)(6 x)-\left(2 x^{3}-3\right)(2 x-1)}{\left(x^{2}-x\right)^{2}}
$$

2. [6 points] Suppose that $g(3)=3, g^{\prime}(3)=-1, h(3)=-2$, and $h^{\prime}(3)=5$. Find the following values:
a. $(g-h)^{\prime}(3)=g^{\prime}(3)-h^{\prime}(3)=-1-(5)=-6$
b. $(4 h-g)^{\prime}(3)=4 h^{\prime}(3)-g^{\prime}(3)=4(5)-(-1)=21$
c. $(g h)^{\prime}(3)=g(3) h^{\prime}(3)+h(3) g^{\prime}(3)=3(5)+(-2)(-1)=15+3=18$
d. $\left(\frac{h}{g}\right)^{\prime}(3)=\frac{g(3) h^{\prime}(3)-h(3) g^{\prime}(3)}{(g(3))^{2}}=\frac{3(5)-(-2)(-1)}{3^{2}}=\frac{15-3}{9}=\frac{12}{9}=\frac{4}{3}$
3. [3 points] If $s=2 e^{t}-6 t$ is the equation of motion of a particle at time t seconds, what is the velocity and acceleration of that particle at time $t=0$? If s is measure in meters, give correct units for both answers.

$$
\begin{array}{ll}
v(t)=s^{\prime}(t)=2 e^{t}-6 & \Rightarrow v(0)=2 e^{0}-6=2-6=-4 \mathrm{~m} / \mathrm{s} \\
a(t)=v^{\prime}(t)=2 e^{t} & \Rightarrow a(0)=2 e^{0}=2 \mathrm{~m} / \mathrm{s}^{2}
\end{array}
$$

4. [3 points] At what x-value or values on the curve $y=x^{3}+2 x^{2}-2 x-9$ is the tangent line perpendicular to the line $y=\frac{1}{2} x+\frac{5}{3}$? [Hint: recall two lines are perpendicular if their slopes are opposite reciprocals.]

To be perpendicular, we need the slope to equal -2 . So solve $y^{\prime}=-2 \Rightarrow-2=3 x^{2}+4 x-2 \Rightarrow 0=3 x^{2}+4 x$
$\Rightarrow 0=x(3 x+4)$ so $x=0$ or $x=-4 / 3$ are the
values we are poking for.

