Name: \qquad Solutions \qquad / 20
There are 20 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [10 points] For each function below, find its derivative. You do not need to simplify your answer.
a. $f(x)=2 \cos (x)-\sec (x)$

$$
\begin{aligned}
& f^{\prime}(x)=(2 \cos x)^{\prime}-(\sec x)^{\prime}=2 \cdot(-\sin x)-\sec x \tan x= \\
& \quad=-2 \sin x-\sec x \tan x
\end{aligned}
$$

b. $r=\frac{3}{2}(\sin (\pi \theta))^{3}$

$$
r^{\prime}(\theta)=\frac{3}{2} \cdot 3(\sin (\pi \theta))^{2} \cdot \cos (\pi \theta) \cdot \pi=\frac{9 \pi}{2}(\sin (\pi \theta))^{2} \cos (\pi \theta)
$$

c. $y=\tan \left(3 x^{2}+2\right)$

$$
y^{\prime}(x)=\sec ^{2}\left(3 x^{2}+2\right) \cdot 6 x
$$

d. $g(x)=\underbrace{x^{2} e^{x}}_{f} \underbrace{\left(2-x^{3}\right)^{5}}_{\mathbf{h}}$

$$
\begin{aligned}
& g^{\prime}(x)=f^{\prime}(x) h(x)+f(x) h^{\prime}(x) \\
& g^{\prime}(x)=\left(2 x \cdot e^{x}+x^{2} \cdot e^{x}\right)\left(2-x^{3}\right)^{5}+x^{2} \cdot e^{x} \cdot 5\left(2-x^{3}\right)^{4} \cdot\left(-3 x^{2}\right)
\end{aligned}
$$

e. $s(t)=\frac{\sin \left(t^{3 / 2}\right)}{e^{2 t}-t}$
2. [6 points] The displacement of a particle on a vibrating string is given by the equation

$$
s=8 \cos \left(\pi t+\frac{\pi}{4}\right)
$$

where t is measured in seconds and s is measured in centimeters.
a. Calculate the velocity and acceleration of the particle at any time t.
velocity: $S^{\prime}(t)=-8 \sin \left(\pi t+\frac{\pi}{4}\right) \cdot \pi$
acceleration: $S^{\prime \prime}(t)=V^{\prime}(t)=-8 \cos \left(\pi t+\frac{\pi}{4}\right) \cdot \pi^{2}$
b. Using the results from part (a), determine the position, velocity and acceleration of the partickle at $t=1$ second including units.
position at $t=1: \quad S(1)=8 \cos \left(\pi \cdot 1+\frac{\pi}{4}\right)=8 \cdot \cos \frac{5 \pi}{4}=\frac{-8 \sqrt{2}}{2}$ (centimeters) velocity at $t=1: \quad V(1)=S^{\prime}(1)=-8 \sin \left(\pi \cdot 1+\frac{\pi}{4}\right) \cdot \pi=-8 \pi \sin \frac{5 \pi}{4}=\frac{8 \pi \sqrt{2}}{2}(\mathrm{cen} / \mathrm{s})$ acceleration at $t=1: \quad a(1)=S^{\prime \prime}(1)=V^{\prime}(1)=-8 \pi^{2} \cos \frac{5 \pi}{4}=\frac{8 \pi^{2} \sqrt{2}}{2}\left(\operatorname{cen} / S^{2}\right)$
3. [4 points] Find the equation of the tangent line to the curve $y=\frac{1}{\sqrt{1+4 x}}$ at the point $(0,1)$. TL equation:

$$
y=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+f\left(x_{0}\right)
$$

$$
x_{0}^{n}{ }^{11} f\left(x_{0}\right)
$$

We have $x_{0}=0, f\left(x_{0}\right)=1$

$$
\begin{aligned}
& f^{\prime}(x)=-\frac{1}{2}(1+4 x)^{-3 / 2} \cdot 4 \\
& f^{\prime}(0)=-\frac{1}{2} \cdot 4 \cdot 1=-2
\end{aligned}
$$

Hence,

$$
y=-2(x-0)+1=-2 x+1
$$

$$
y=-2 x+1
$$

TL equation

