Name: \qquad

There are 20 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [7 points] Consider the function $f(x)=\frac{x^{4}}{4}-6 x^{2}+16 x+1$ and note that $f^{\prime}(x)=16-12 x+x^{3}=$ $(-2+x)^{2}(4+x)$. Determine the intervals where f is increasing and decreasing, where f is concave up and concave down, and list all local maxima, minima, and inflection points. If none, indicate that.

You must clearly show your work to receive credit. Consider using some words.
$f(x)$ is increasing \qquad $f(x)$ is decreasing \qquad
local max at $x=$ \qquad local min at $x=$ \qquad
$f(x)$ is concave up \qquad $f(x)$ is concave down \qquad inflection point(s) at $x=$ \qquad
2. [3 points] Compute the following limit. Show all your work, including stating the indeterminate type of the limit, if relevant. If you use L'Hospital's rule, you MUST indicate where you are doing so.
$\lim _{t \rightarrow 0} \frac{(t-1)^{2}-e^{3 t}}{t}$
3. [3 points] Compute the following limit. Show all your work, including stating the indeterminate type of the limit, if relevant. If you use L'Hospital's rule, you MUST indicate where you are doing so.

```
\mp@subsup{\operatorname{lim}}{x->\frac{\pi}{2}}{}\operatorname{cos}(x)\operatorname{sec}(3x)
```

4. [7 points] Suppose you know that $q(x)$ is a function with the following properties:

- The domain of $q(x)$ is $(-\infty,-1) \cup(-1, \infty)$
- $\lim _{x \rightarrow-\infty} q(x)=2$ and $\lim _{x \rightarrow \infty} q(x)=\infty$
- $x=-1$ is a vertical asymptote
- $q(0)=1$

Furthermore, you know the following information about the signs of the first and second derivatives:

x	$x<-3$	-3	$-3<x<-1$	-1	$-1<x<4$	4	$x>4$
sign of q^{\prime}	+	0	-	DNE	+	0	+

x	$x<-5$	-5	$-5<x<-1$	-1	$-1<x<4$	4	$x>4$
sign of $q^{\prime \prime}$	+	0	-	DNE	-	0	+

Sketch a graph of a function with all these properties. Clearly label and mark the x-coordinates on the x-axis of all local maxima, minima and all inflection points, and label all asymptotes with their equations.

