20 points possible. No aids (book, calculator, etc.) are permitted. You need not simplify unless asked, but show all work and use proper notation for full credit.

1. [5 points] The following table gives the velocity (in \mathbf{m} / \mathbf{s}) of an object at time t (in seconds).

t (in seconds)	2	4	6	8	10
$v(t)$ (in $\mathrm{m} / \mathrm{s})$	40	38	32	25	10

Estimate the distance traveled between $t=2$ and $t=10$ using LEFT-HAND rectangles .
(a) Sketch a graph showing how you are estimating the distance traveled.
(b) Set up, but DO NOT COMPUTE, a calculation determining the distance traveled. (You can do the arithmetic if you like, but we don't need you to.)

Distance $=2(40)+2(38)+2(30)$ $+2(25)$
(c) What are the units associated with your computation? \qquad
2. [5 points] We want to estimate the area (shaded in gray) under the graph of $f(x)=x^{2}-x$ from 1 to 3 using the areas of three rectangles of equal width, where the heights of the rectangles are determined by the height of the curve at right-hand endpoints.
(a) Width of each rectangle $=2 / 3$
(b) DRAW the rectangles on the graph.
(c) Set up, but DO NOT EVALUATE, a computation to determine the area of the rectangles. Your computaion should not include the symbols " $f(x)$ ".

$$
\frac{2}{3}\left(\left(\frac{5}{3}\right)^{2}-\left(\frac{5}{3}\right)\right)+\frac{2}{3}\left(\left(\frac{7}{3}\right)^{2}-\left(\frac{7}{3}\right)\right)+\frac{2}{3}\left(3^{2}-3\right)
$$

(d) Does your computation overestimate or underestimate the actual area, and why?

$$
\begin{aligned}
& \text { Overestimation - the rectangles include area that is not in the } \\
& \text { Calculus I gray shaded area }
\end{aligned}
$$

3. [2 points] Given that f is the function whose graph is shown below and $g(x)=\int_{0}^{x} f(t) d t$, find the following. Show some work for possible partial credit.
a. $g(3)=\underline{3}$
the pink shaded area
b. $\int_{1}^{5} f(t) d t=3$
the blue /II area
$=2+0-1+2$

4. [5 points] [Fill in the blank] If $\int_{1}^{5} f(x) d x=7, \int_{-3}^{1} g(x) d x=12$ and $\int_{1}^{5} g(x) d x=13$, compute the following quantities or state that it cannot be evaluated from the given information:
a. $\int_{1}^{1} f(x) d x=0$
b. $\int_{5}^{1} 4 f(x) d x=-4 \int_{1}^{5} f(x) d x=-28$
c. $\int_{-3}^{5} g(x) d x=\int_{-3}^{1} g(x) d x+\int_{1}^{5} g(x) d x=12+13=25$
d. $\begin{aligned} \int_{-3}^{1}[4 g(x)-10] d x=4 \int_{-3}^{1} g(x) d x-\int_{-3}^{1} 10 d x=4(12)-10(1-(-3)) & =48-40 \\ & =8\end{aligned}$
e. $\int_{1}^{5}[5 f(x)+3 g(x)] d x=5 \int_{1}^{5} f(x) d x+3 \int_{1}^{5} g(x) d x=5(7)+3(13)$

$$
=35+39=74
$$

5. [3 points] Evaluate the integral $\int_{0}^{7}|x-3| d x$ by interpreting it in terms of area. Justify your answer by sketching a graph.

$$
\begin{aligned}
& \int_{0}^{7}|x-3| d x=\frac{1}{2}(3)(3)+\frac{1}{2}(4)(4) \\
& =\frac{1}{2}(9+16)=\frac{25}{2}
\end{aligned}
$$

