20 points possible. No aids (book, calculator, etc.) are permitted. You need not simplify unless asked, but show all work and use proper notation for full credit.

1. [5 points] The following table gives the velocity (in m/s) of an object at time t (in seconds).

t (in seconds)	2	4	6	8	10
v(t) (in m/s)	40	38	32	25	10

Estimate the distance traveled between t = 2 and t = 10 using LEFT-HAND rectangles

- (a) Sketch a graph showing how you are estimating the distance traveled.
- (b) Set up, but DO NOT COMPUTE, a calculation determining the distance traveled. (You can do the arithmetic if you like, but we don't need you to.)

(c) What are the units associated with your computation?

- **2. [5 points]** We want to estimate the area (shaded in gray) under the graph of $f(x) = x^2 x$ from 1 to 3 using the areas of **three rectangles** of equal width, where the heights of the rectangles are determined by the height of the curve at right-hand endpoints.
 - (a) Width of each rectangle = $\frac{73}{73}$
 - (b) DRAW the rectangles on the graph.
 - (c) Set up, but DO NOT EVALUATE, a computation to determine the area of the rectangles. Your computation should not include the symbols "f(x)".

 $\frac{2}{3}\left(\left(\frac{5}{3}\right)^{2}\left(\frac{5}{3}\right)\right) + \frac{2}{3}\left(\left(\frac{7}{3}\right)^{2}-\left(\frac{7}{3}\right)\right) + \frac{2}{3}\left(3^{2}-3\right)$

(d) Does your computation overestimate or underestimate the actual area, and why?

Overestimation - the rectangles include area that is not in the gray shaded area

Math 251: Quiz 9

3. [2 points] Given that f is the function whose graph is shown below and $g(x) = \int_0^x f(t) dt$, find the following. Show some work for possible partial credit.

4. [5 points] [Fill in the blank] If $\int_{1}^{5} f(x) dx = 7$, $\int_{-3}^{1} g(x) dx = 12$ and $\int_{1}^{5} g(x) dx = 13$, compute the following quantities or state that it cannot be evaluated from the given information:

a.
$$\int_{1}^{1} f(x) dx = 0$$

b. $\int_{5}^{1} 4f(x) dx = -4 \int_{1}^{5} f(x) dx = -28$
c. $\int_{-3}^{5} g(x) dx = \int_{-3}^{1} g(x) dx + \int_{1}^{5} g(x) dx = 12 + 13 - 25$
d. $\int_{-3}^{1} [4g(x) - 10] dx = 4 \int_{-3}^{1} g(x) dx - \int_{3}^{1} 10 dx = 4(12) - 10(1 - (-3)) = 48 - 40$
 $= 8$
e. $\int_{1}^{5} [5f(x) + 3g(x)] dx = 5 \int_{1}^{5} f(x) dx + 3 \int_{1}^{5} g(x) dx = 5(-7) + 3(+3)$
 $= 35 + 39 = 74$

5. [3 points] Evaluate the integral $\int_0^{\infty} |x-3| dx$ by interpreting it in terms of area. Justify your answer by sketching a graph.

$$\int_{0}^{7} |X - 3| \, dx = \frac{1}{2} (3)(3) + \frac{1}{2} (4)(4)$$
$$= \frac{1}{2} (9 + 16) = \frac{25}{2}$$

Fall 2020