Name: \qquad
\qquad
There are 25 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [16 points] (4 pts each; 2 pts for answer, 2 pts for work) Evaluate the following limits. Give the most complete answer; if the limit is infinite, indicate that with ∞ or $-\infty$. If a value does not exist, write DNE.

$$
\begin{aligned}
& \text { a. } \lim _{x \rightarrow 2} \frac{x^{2}-4}{x^{2}-5 x+6}=\frac{2^{2}-4}{2^{2}-10+6}=\frac{0^{\text {L }}}{\begin{array}{c}
\text { substitution } \\
\text { doesnt. } \\
\text { work; } \\
\text { Factor! }
\end{array}} \\
& =\lim _{x \rightarrow 2} \frac{(x-2)(x+2)}{(x-2)(x-3)}=\lim _{x \rightarrow 2} \frac{x+2}{x-3}=\frac{2+2}{2-3}=\frac{4}{-1}=-4
\end{aligned}
$$

$$
=\lim _{h \rightarrow 0} \frac{3}{2(2+h)}=\frac{3}{2(2+a)}=\frac{3}{4}
$$

c. Make sure to give some justification for your answer here. $\lim _{t \rightarrow-3+3} \frac{5+t}{t^{2}+3 t}=\frac{8}{9-9}=\frac{8}{0}$ infinite. Figure out the sign:

$$
\left.\begin{array}{rl}
\lim _{t \rightarrow-3^{+}}\left(\frac{5+t}{t}\right)\left(\frac{1}{t+3}\right)= & -\infty \\
\frac{5-3}{-3}=\frac{-2}{3}+\infty
\end{array}\right)
$$

d. Given $\lim _{x \rightarrow 5} f(x)=8$ and $\lim _{x \rightarrow 5} g(x)=-10$, evaluate $\lim _{x \rightarrow 5} \frac{3 f(x)-x}{(g(x))^{2}}$. $=\frac{3(8)-5}{(-10)^{2}}$

$$
=\frac{24-5}{100}=\frac{19}{100}
$$

2. [4 points] Does the equation $x-\sin (\pi x)-3=0$ have a solution on the interval from $x=0$ to $x=5$? Use the Intermediate Value Theorem to justify your answer.
Answer: Yes. The equation does have a solution. Let $f(x)=x-\sin (\pi x)-3$, a continuous function. $f(0)=0-\sin (0)-3=-3<0$.

$$
f(5)=5-\sin (5 \pi)-3=2>0 .
$$

The IVThm tells us there is a C-value in the interval $(0,5)$ such that $f(c)=0$. So the equation has a solution.
3. [5 points] Consider the graph of the function $y=H(x)$ shown in the graph below.

a. List all x-values for which the function $H(x)$ fails to be continuous.

$$
x=3,4,5
$$

b. Label the values above as removable or nonremovable. removable: $x=5$, non removabl: $x=3,4$

