Name: \qquad
\qquad
There are 25 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [4 points] The function $C(y)=\frac{18(1+y)}{2 y+5}$ models a herd of caribou where C is the number of caribou in hundreds and y is measured in years starting in the year 2000.
a. Observe that $C(10)=7.92$. Interpret this fact in the context of the problem. To earn full credit your answer should be a complete sentence and must include units.

In 2010, there were 792 caribou.

b. It can be shown that $C^{\prime}(10)=0.0864$. Interpret this fact in the context of the problem. To earn full credit your answer should be a complete sentence and must include units.
In 2010, the population of caribou was increasing at a rate of 8.64 caribou per year.
2. [4 points] The function $y=H(x)$ is graphed below. Sketch the graph of $H^{\prime}(x)$ on the same set of axes.

3. [9 points] Find the derivative of $f(x)=3 \sqrt{x}$ using the limit definition of the derivative. No credit will be given for an answer that uses the power rule.

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{3 \sqrt{x+h}-3 \sqrt{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{3 \sqrt{x+h}-3 \sqrt{x}}{h} \cdot \frac{(3 \sqrt{x+h}+3 \sqrt{x})}{(3 \sqrt{x+h}+3 \sqrt{x})}=\lim _{h \rightarrow 0} \frac{9(x+h)-9 x}{h(3 \sqrt{x+h}+3 \sqrt{x})} \\
& =\lim _{h \rightarrow 0} \frac{9 x+9 h-9 x}{h(3 \sqrt{x+h}+3 \sqrt{x})}=\lim _{h \rightarrow 0} \frac{9}{3 \sqrt{x+h}+3 \sqrt{x}}=\frac{9}{6 \sqrt{x}}=\frac{3}{2 \sqrt{x}}
\end{aligned}
$$

Check
myself: $y=3 x^{1 / 2} \quad y^{\prime}=\frac{3}{2} x^{-1 / 2}$
4. [8 points] For each function below, find its derivative. You may use any method you like. You do not have to simplify your answer.

Quotient Rule
a. $f(x)=\frac{x^{3}+x-\pi^{2}}{3}$

Simplify first:

$$
\begin{aligned}
& f(x)=\frac{1}{3} x^{3}+\frac{1}{3} x-\frac{\pi^{2}}{3} \\
& f^{\prime}(x)=x^{2}+\frac{1}{3}
\end{aligned}
$$

$$
\begin{aligned}
& f^{\prime}(x)=\frac{3\left(3 x^{2}+1\right)-\left(x^{3}+x-\pi^{2}\right)(0)}{3^{2}} \\
& =\frac{3\left(3 x^{2}+1\right)}{9}=\frac{1}{3}\left(3 x^{2}+1\right)=x^{2}+\frac{1}{3}
\end{aligned}
$$

b. $g(x)=x\left(\frac{1}{x^{2}}+\frac{1}{x}\right)=x\left(\mathbf{X}^{-2}+\mathrm{X}^{-1}\right)$

Simplify first:

$$
\begin{aligned}
& g(x)=x^{-1}+1 \\
& g^{\prime}(x)=-x^{-2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { product rule } \\
& \begin{aligned}
g^{\prime}(x) & =1\left(x^{-2}+x^{-1}\right)+x\left(-2 x^{-3}-x^{-2}\right) \\
& =x^{-2}+x^{-1}-2 x^{-2}-x^{-1} \\
& =-x^{-2}
\end{aligned}
\end{aligned}
$$

