Name: \qquad
There are 25 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [8 points] Follow the steps below to solve a related rates problem.
a. Assume the base, b, of a triangle is growing at a rate of 2 feet per minute and the height, h, of the triangle is shrinking at a rate of 4 feet per minute when the base is 10 feet long and height is 15 feet long. Using this information, identify values for $h, b, d h / d t$ and $d b / d t$.

$$
\begin{array}{ll}
b=10 \mathrm{ft} & d b / d t=2 \mathrm{ft} / \mathrm{min} \\
h=15 \mathrm{ft} & d \mathrm{f} / \mathrm{dt}=-4 \mathrm{ft} / \mathrm{min}
\end{array}
$$

b. The area of a triangle is given by the formula $A=\frac{1}{2} b h$ where b is the length of the base of the triangle and h is its height. Take the derivative of the above equation implicitly with respect to time.

$$
A=\frac{1}{2} \cdot h \longrightarrow \text { product rule! }
$$

$$
\frac{d A}{d t}=\frac{1}{2}\left[b \cdot \frac{d h}{d t}+\frac{d b}{d t} \cdot h\right]
$$

c. Use the above information to determine the rate of change of the area of the triangle. Include units.

$$
\frac{d A}{d t}=\frac{1}{2}(10 \cdot(-4)+2(15))=\frac{1}{2}(-40+30)=-5 \mathrm{ft}^{2} / \mathrm{min}
$$

d. Is the area increasing or decreasing at this instant? Justify your answer.

$$
\text { Decreasing. } \frac{d A}{d t}<0 \text {. }
$$

2. [8 points] Let $f(x)=x^{4}$.
a. Find the linear approximation, $L(x)$, of $f(x)$ at $x=2$.

$$
\begin{aligned}
f(2) & =2^{4}=16 \\
f^{\prime}(x) & =4 x^{3} \\
f^{\prime}(2) & =4\left(2^{3}\right) \\
& =32
\end{aligned}
$$

b. Use the linear approximation to estimate $(1.8)^{4}$. Your answer here must be in the form of a simplified fraction. or decimal.
aside:

$$
32(0.2)=6.4
$$

3. [9 points] Let $g(x)=3 x^{4}-4 x^{3}$.
a. Find all critical points of $g(x)$.

$$
g^{\prime}(x)=12 x^{3}-12 x^{2}=12 x^{2}(x-1)
$$

c. points: $x=0$ and $x=1$

$$
\text { aside: } \begin{aligned}
& 16 \\
& \frac{3}{48}
\end{aligned}
$$

end points
b. Determine the absolute minimum and absolute maximum of $g(x)$ on the interval $[-1,2]$. Make sure to show your work.
make a table

x	-1	2	
$y=g(x) \\| g(-1)$	$g(2)$		
$=3+4$	$=48-32$		
$=7$	$=16$		

