Name: \qquad
\qquad
There are 25 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [2 points] State the definition of the derivative.

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

2. [8 points] Use the definition of the derivative to find $f^{\prime}(x)$ if $f(x)=\frac{5}{x+1}$.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\frac{5}{x+h+1}-\frac{5}{x+1}}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{5(x+1)-5(x+h+1)}{(x+h+1)(x+1)}\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{5 x+5-5 x-5 h-5}{(x+h+h)(x+1)}\right)=\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{-5 h}{(x+h+1)(x+1)}\right) \\
& =\lim _{h \rightarrow 0} \frac{-5}{(x+h+1)(x+1)}=\frac{-5}{(x+0+1)(x+1)}=\frac{-5}{(x+1)^{2}}
\end{aligned}
$$

3. [3 points] Use the Quotient Rule to find $f(x)=\frac{\sin (x)}{x+1}$. (You do not need to simplify.)

$$
f^{\prime}(x)=\frac{(x+1)(+\cos (x))-(\sin x)(1)}{(x+1)^{2}}=\frac{(x+1) \cos (x)-\sin (x)}{(x+1)^{2}}
$$

4. [6 points] Find the derivative for each function below.
a. $y=2 x^{4.1}-x+\pi^{2}$

$$
y^{\prime}=2(4.1) x^{3.1}-1=8.2 x^{3.1}-1
$$

b. $y=x \cos (x)$

$$
y^{\prime}=1 \cdot \cos (x)+x(-\sin (x))
$$

5. [6 points] Assume $C(q)$ is the cost, in dollars, of manufacturing q widgets.
a. Using a complete sentence (or sentences), interpret the meaning of $C(50)=1120$.

It costs $\$ 1120$ to manufacture 50 widgets.
b. What are the units of $C^{\prime}(q)$?

$$
\frac{\Delta C}{\Delta q}=\frac{\$}{\text { widgets }} \text { or dollasper widget. }
$$

c. Using a complete sentence (or sentences), interpret the meaning of $C^{\prime}(50)=15$.

Manufacturing costs are increasing at a rate of \$15/widget when 50 widgets are produced.

