Name: \qquad
\qquad
There are 25 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [9 points]

An open-topped box with a square base will be constructed from material that costs $\$ 10$ per square meter for the base of the box and $\$ 1$ per square meter for the sides of the box. Determine the dimensions of the box of the least expensive box that has a volume of 40 cubic meters.

a. What is a formula for the cost, C, of the box using x and y as labeled in the picture?

$$
C=10 x^{2}+4 x y
$$

b. Write C as a function of one variable. You must show your work to receive any credit here.

$$
\begin{array}{rl}
V=x^{2} y=40 & C(x) \\
y=40 x^{-2} & =10 x^{2}+4 x\left(40 x^{-2}\right) \\
& =10 x^{2}+160 x^{-1}
\end{array}
$$

c. What is a reasonable domain for the function above?

$$
x>0 \quad \text { or }(0, \infty)
$$

d. In one approach, the function for cost could be $c(x)=10 x+160 x^{-1}$. Use this function to answer the question. You must justify your answer to earn full credit.

$$
\begin{aligned}
& c^{\prime}(x)=20 x-160 x^{-2}=0 \\
& 20 x=\frac{160}{x^{2}} \\
& x^{3}=\frac{160}{20}=8 \\
& x=2
\end{aligned}
$$

So $C(x)$ has a min. at $x=2$.
Answer: Dimensions of min. cost:

$$
x=2 \mathrm{~m}, y=10 \mathrm{~m}
$$

2. [10 points] Evaluate the limits below. If you use L'Hopital's Rule, demonstrate this by identifying the form of the limit and with an h over the equal sign.
a. $\lim _{\theta \rightarrow 0} \frac{2 \theta}{\sin (\theta)} \stackrel{\text { (1) }}{=} \lim _{\theta \rightarrow 0} \frac{2}{\cos (\theta)}=\frac{2}{1}=2$ \uparrow
form $\frac{0}{8}$
b. $\lim _{x \rightarrow 0^{+}} x \ln (x)=\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{x^{-1}} \stackrel{\Perp}{=} \lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{-x^{-2}}=\lim _{x \rightarrow 0^{+}} \frac{-x^{2}}{x}=\lim _{x \rightarrow 0^{+}}-x=0$
c. $\lim _{x \rightarrow 0} \frac{x^{3}}{1+\cos (x)}=\frac{0}{1+1}=\frac{0}{2}=0$
3. [6 points] Evaluate the integrals below and check that your answer is correct.
a. $\int(5+\sin (x)) d x=5 x-\cos (x)+C$
check $y=5 x-\cos (x)+c$

$$
y^{\prime}=5+\sin (x) 2
$$

b. $\int 4 x^{1 / 3}-\sec ^{2}(x) d x=4\left(\frac{3}{4}\right) x^{4 / 3}-\tan (x)+C$
check: $y=3 x^{4 / 3}-\tan (x)+C$

$$
y^{\prime}=3\left(\frac{4}{3}\right) x^{1 / 3}-\sec ^{2}(x)
$$

