There are 25 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. (10 points) The function H(x) has domain $(-5, \infty)$ and has a vertical asymptote at x = -2. Use the graph of H(x) to answer each question below. If the limit is infinite, indicate that with ∞ or $-\infty$. If the value does not exist or is undefined, write **DNE**.

(a)
$$H(1) =$$

(b)
$$\lim_{x \to 1} H(x) =$$

(b)
$$\lim_{x \to 1} H(x) =$$
____ (c) $\lim_{x \to -2^+} H(x) =$ ____

(d)
$$H(-2) =$$

(e)
$$\lim_{x \to 2^{-}} H(x) =$$

(d)
$$H(-2) =$$
_____ (e) $\lim_{x \to -2^{-}} H(x) =$ _____ (f) $\lim_{x \to -2} H(x) =$ _____

(g) Estimate H(3).

(h) Evaluate $\lim_{x\to 0} (3H(x)+5)$.

(i) List all x-values in the domain of H(x) for which the function H(x) fails to be continuous.

2. (2 points) If $\lim_{x \to -2} f(x) = 6$ and $\lim_{x \to -2} g(x) = -1$, is it possible to evaluate $\lim_{x \to -2} \frac{f(x) + g(x)}{x^2 f(x)}$? If so evaluate the limit. If not, explain why.

3. (9 points) Use algebra to evaluate the limits below. You must show your work to earn full credit **and** your work will be graded. (That is, you need to write your mathematics correctly.)

(a)
$$\lim_{x\to 4} \frac{x^2 - 11x + 28}{(x-4)(x+2)} =$$

(b)
$$\lim_{h \to 0} \frac{\frac{3}{(a+h)} - \frac{3}{a}}{h} =$$

(c)
$$\lim_{x\to 2} \frac{(x+2)(x-3)}{x^2+4} =$$

4. (4 points) Let
$$f(x) = \begin{cases} 1 - x + x^2 & x \le 0 \\ e^x & x > 0 \end{cases}$$
.

- (a) Find $\lim_{x\to 0^-} f(x)$.
- (b) Find $\lim_{x\to 0^+} f(x)$.
- (c) Find f(0).
- (d) Use your answers to the previous parts to explain whether f(x) is or is not continuous at x = 0. Your answer should be a complete sentence.