Name: \qquad
There are 25 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. (10 points) The function $H(x)$ has domain $(-5, \infty)$ and has a vertical asymptote at $x=-2$. Use the graph of $H(x)$ to answer each question below. If the limit is infinite, indicate that with ∞ or $-\infty$. If the value does not exist or is undefined, write DNE.

(a) $H(1)=$
(b) $\lim _{x \rightarrow 1} H(x)=$
(c) $\lim _{x \rightarrow-2^{+}} H(x)=$ \qquad
(d) $H(-2)=$
(e) $\lim _{x \rightarrow-2^{-}} H(x)=$
(f) $\lim _{x \rightarrow-2} H(x)=$ \qquad
(g) Estimate $H(3)$. \qquad
(h) Evaluate $\lim _{x \rightarrow 0}(3 H(x)+5)$. \qquad
(i) List all x-values in the domain of $H(x)$ for which the function $H(x)$ fails to be continuous.
2. (2 points) If $\lim _{x \rightarrow-2} f(x)=6$ and $\lim _{x \rightarrow-2} g(x)=-1$, is it possible to evaluate $\lim _{x \rightarrow-2} \frac{f(x)+g(x)}{x^{2} f(x)}$? If so evaluate the limit. If not, explain why.
3. (9 points) Use algebra to evaluate the limits below. You must show your work to earn full credit and your work will be graded. (That is, you need to write your mathematics correctly.)
(a) $\lim _{x \rightarrow 4} \frac{x^{2}-11 x+28}{(x-4)(x+2)}=$
(b) $\lim _{h \rightarrow 0} \frac{\frac{3}{(a+h)}-\frac{3}{a}}{h}=$
(c) $\lim _{x \rightarrow 2} \frac{(x+2)(x-3)}{x^{2}+4}=$
4. (4 points) Let $f(x)=\left\{\begin{array}{ll}1-x+x^{2} & x \leq 0 \\ e^{x} & x>0\end{array}\right.$.
(a) Find $\lim _{x \rightarrow 0^{-}} f(x)$.
(b) Find $\lim _{x \rightarrow 0^{+}} f(x)$.
(c) Find $f(0)$.
(d) Use your answers to the previous parts to explain whether $f(x)$ is or is not continuous at $x=0$. Your answer should be a complete sentence.
