Name: \qquad Solutions \qquad
There are 25 points possible on this quiz. You should be able to complete it without using your notes or textbook or a calculator - this is practice for your exams! If you needed to look something up, you should to me about questions you might have. Show all work for full credit and use some words or sentences to help communicate your answers.

1. [4 points] Define $G(x)=\int_{0}^{x} f(t) d t$ where the graph of $f(t)$ is drawn below.
a. Determine $G(4)$.

$$
G(4)=\text { shaded area }=9
$$

b. Does $G(x)$ have a maximum on the interval $[0,10]$? Explain your answer.
Yes, at $x=7$ since the derivative $f(x)$ goes from t to -
2. [6 points] Evaluate each definite integral using the Fundamental Theorem of Calculus Part 2.

$$
\begin{aligned}
& \text { a. } \int_{1}^{9} \frac{6}{\sqrt{x}} d x=\int_{1}^{9} 6 x^{-1 / 2} d x=\left.\frac{6 x^{1 / 2}}{1 / 2}\right|_{1} ^{9}=\left.12 \sqrt{x}\right|_{1} ^{9} \\
& =12 \sqrt{9}-12 \sqrt{1}=12(3-1)=24
\end{aligned}
$$

$$
\begin{aligned}
& \text { b. } \int_{0}^{\pi / 3}(12-2 \sin (x)) d x=12 x+\left.2 \cos (x)\right|_{0} ^{\pi / 3} \\
= & 12(\pi / 3)+2 \cos (\pi / 3)-12(0)-2 \cos (0) \\
= & 4 \pi+2(1 / 2)-0-2 \\
= & 4 \pi-1
\end{aligned}
$$

3. [4 points] Evaluate $\int_{0}^{\pi / 4}(\sec (\theta))^{2} \tan (\theta) d \theta$. Show your work.

$$
\begin{aligned}
& u=\tan \theta \text { So } \int_{0}^{\pi / 4} \sec ^{2} \theta \tan \theta d \theta \\
& d u=\sec ^{2} \theta d \theta \\
& x=0 \Rightarrow u=0 \\
& x=\pi / 4 \Rightarrow \\
& \vec{u}=\operatorname{lan}(\pi / 4)=1 \\
& =\int_{0}^{1} u d u=\left.\frac{u^{2}}{2}\right|_{0} ^{1}=\frac{1}{2} \\
& \sec \theta \text {. Then } d u=\sec \theta \tan \theta d \theta \\
& \text { And } \theta=0 \Rightarrow u=1 \text { and } \\
& \theta=1 / 4 \Rightarrow u=\sqrt{2} \\
& \text { So } \int_{0}^{\pi / 4} \sec ^{2} \theta \tan \theta d \theta= \\
& \int_{1}^{\sqrt{2}} u d u=\left.\frac{u^{2}}{2}\right|_{1} ^{\sqrt{2}}=1-\frac{1}{2}
\end{aligned}
$$

Method \#2:
Alternately: let $u=$

Method 3 for $\# 3: \quad \int_{0}^{\pi / 4 / 4}(\sec \theta)^{2} \tan \theta d \theta=\int_{0}^{\pi / 4} \frac{1}{(\cos \theta)^{2}} \cdot \frac{\sin \theta}{\cos \theta} d \theta=\int_{0}^{\pi / 4} \frac{\sin \theta}{(\cos \theta)^{3}} d \theta$ Let $u=\cos \theta$ and go from there!

December 3, 2023
Math F251X: Quiz 10
4. [6 points] Use the Fundamental Theorem of Calculus (Part 1) to find each derivative.
a. $\frac{d}{d x}\left(\int_{6}^{x} t^{5}-\frac{2}{t} d t\right)=x^{5}-\frac{2}{x}$

$$
\begin{aligned}
& \text { b. } \frac{d}{d x}\left(\int_{\cos (x)}^{4} \sqrt{1-t^{2}} d t\right)=-\frac{d}{d x} \int_{4}^{\cos x} \sqrt{1-t^{2}} d t \\
& =-\sqrt{1-(\cos (x))^{2}}(-\sin (x))=\sin (x) \sqrt{1-\cos ^{2} x}
\end{aligned}
$$

5. [5 points] A ball is thrown upward from an initial height of 4 ft at an initial speed of $10 \mathrm{ft} / \mathrm{s}$. The acceleration due to gravity is $32 \mathrm{ft} / \mathrm{s}^{2}$. (Just to be clear, we are assuming $a(t)=-32$ is the equation modeling the acceleration of the ball.)
a. Solve for $v(t)$, the velocity of the ball t seconds after it is thrown into the air. (Use calculus techniques.)

$$
\begin{aligned}
& a(t)=-32 \\
& V(t)=\int a(t) d t=-32 t+C \\
& \text { but } V(0)=10 \Rightarrow V(t)=-32 t+10
\end{aligned}
$$

b. Solve for $h(t)$, the height of the ball t seconds after it is thrown into the air. (Use calculus techniques.)

$$
\begin{aligned}
& h(t)=\int v(t) d t=\int-32 t+10 d t=-32 t^{2}+10 t+c \\
& \text { but } h(0)=4 \Rightarrow h(t)=-32 t^{2}+10 t+4
\end{aligned}
$$

c. At what time is the ball the highest? Show your work, and answer the question with a sentence.

$$
\begin{aligned}
& \text { sentence. } v(t)=0 \Rightarrow-32 t+10=0 \Rightarrow t=10 / 32=\frac{5}{16} \text { need } v(t)
\end{aligned}
$$

the ball is highest at $5 / 16 \mathrm{~S}$ after it was thrown.

