____ / 25

Name: _

There are 25 points possible on this quiz. *You should be able to complete it without using your notes or textbook or a calculator — this is practice for your exams!* If you needed to look something up, you should to me about questions you might have. **Show all work for full credit** and use some words or sentences to help communicate your answers.

1. [4 points] Define
$$G(x) = \int_0^x f(t) dt$$
 where the graph of $f(t)$ is drawn below.
a. Determine $G(4)$.

- **b**. Does G(x) have a maximum on the interval [0, 10]? Explain your answer.
- 2. [6 points] Evaluate each definite integral using the Fundamental Theorem of Calculus Part 2.
 - **a.** $\int_{1}^{9} \frac{6}{\sqrt{x}} dx$

b.
$$\int_0^{\pi/3} (12 - 2\sin(x)) dx$$

3. [4 points] Evaluate $\int_0^{\pi/4} (\sec(\theta))^2 \tan(\theta) d\theta$. Show your work.

December 3, 2023

4. [6 points] Use the Fundamental Theorem of Calculus (Part 1) to find each derivative.

a.
$$\frac{d}{dx}\left(\int_{6}^{x}t^{5}-\frac{2}{t}\,dt\right)$$

b.
$$\frac{d}{dx} \left(\int_{\cos(x)}^4 \sqrt{1-t^2} \, dt \right)$$

- 5. [5 points] A ball is thrown upward from an initial height of 4 ft at an initial speed of 10 ft/s. The acceleration due to gravity is 32 ft/s². (Just to be clear, we are assuming a(t) = -32 is the equation modeling the acceleration of the ball.)
 - **a**. Solve for v(t), the velocity of the ball t seconds after it is thrown into the air. (Use calculus techniques.)

b. Solve for h(t), the height of the ball t seconds after it is thrown into the air. (Use calculus techniques.)

c. At what time is the ball the highest? Show your work, and answer the question with a sentence.