```
Name: _
```

There are 18 questions worth 25 points on this quiz. No aids (book, calculator, etc.) are permitted. **Show all work for full credit.**

1. [1 points] Determine the domain and range of $f(x) = \frac{1}{x^2} + 5$. Write your answers in interval notation.

Domain: _____

Range: _____

2. [1 points] For $f(x) = 8 - x^2$ and g(x) = 3 + x, find the composition $f \circ g$ and simplify your answer.

3. [1 points] Write the expression $\frac{x^5y^8}{x^3y^{-1}z^2}$ in the form $x^ay^bz^c$. (That is, write the expression with all terms in the numerator.)

4. [1 points] A rectangle has a width *w* that is twice its length, ℓ . Find an expression for the area, *A*, of the rectangle in terms of its length, ℓ .

5. [2 points] Write an equation of the line between the points (5, -7) and (2, 1).

- 6. [1 points] Simplify the expression $\frac{2x^3 + 2x^2y}{4x^2 + 12xy}$ by cancelling all common factors in both the numerator and denominator.
- 7. [2 points] Sketch the graph of $f(x) = 16 x^2$. Label any x- or y-intercepts in your sketch.

- 8. [2 points] Use the piecewise defined function $f(x) = \begin{cases} x^3 & x \le 0 \\ \frac{x}{x+1} & x > 0 \end{cases}$.
 - **a**. Find f(10).
 - **b**. Determine x such that f(x) = -8.
- **9.** [1 points] Evaluate $\sin(5\pi/6)$ exactly.
- **10.** [1 points] Solve the equation sin(x) + 1 = 0 on the interval $0 \le x < 2\pi$.

11. [1 points] In the right triangle below, a = 1 and c = 4. Determine the value of the tangent function at angle A.

Î

12. [2 points] Sketch the graph of $f(x) = e^x - 1$. Label any *x*- or *y*-intercepts, and draw any asymptotes with dashed lines. Give the equation of any asymptotes of f(x).

 \longrightarrow
Equation of asymptote(s)?

13. [1 points] Solve the equation $4 + e^{3x} = 10$ for x. Give an exact answer.

14. [2 points] Sketch the graph of $f(x) = \ln(x-3)$. Label any *x*- or *y*-intercepts, and draw any asymptotes with dashed lines. Give the equation of any asymptotes of f(x).

Equation of asymptote(s)?

15. [1 points] Solve the equation $\frac{\ln(x+1)}{5} = 3$ for *x*. Give an exact answer.

16. [1 points] Solve the inequality $x^2 \ge 4$.

17. [2 points] Sketch the graph of $f(x) = 3\cos(x)$ on the interval $0 \le x \le 2\pi$. Label any x- or y-intercepts, and draw any asymptotes with dashed lines. Give the equation of any asymptotes of f(x).

Equation of asymptote(s)? _____

18. [2 points] Use the graph of f(x) below to answer the questions.

a. Estimate f(-2).

b. Estimate an *x*-value such that f(x) = 3.