Name: \qquad
\qquad
There are 18 questions worth 25 points on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [1 points] Determine the domain and range of $f(x)=\frac{1}{x^{2}}+5$. Write your an swers in interval notation.

Domain: \qquad $(-\infty, 0) \cup(0, \infty)$

Range: $[5, \infty)$
2. [1 points] For $f(x)=8-x^{2}$ and $g(x)=\mathbf{3}+x$, find the composition $f \circ g$ and simplify your answer.

$$
\begin{aligned}
& f(g(x))=f(2+x)=8-(3+x)^{2} \\
& =8-\left(9+6 x+x^{2}\right) \\
& =-1+6 x+x^{2}
\end{aligned}
$$

\qquad
3. [1 points] Write the expression $\frac{x^{5} y^{8}}{x^{3} y^{-1} z^{2}}$ in the form $x^{a} y^{b} z^{c}$. (That is, write the expression with all terms in the numerator.)

$$
\frac{x^{5} y^{8}}{x^{3} y^{-1} z^{2}}=x^{5-3} y^{8-(-1)} z^{-2}=
$$

$$
x^{2} y^{9} z^{-2}
$$

4. [1 points] A rectangle has a width w that is twice its length, ℓ. Find an expression for the area, A, of the rectangle in terms of its length, ℓ.

$$
\begin{aligned}
& \quad \text { area: } l \cdot w=l(2 l) \\
& A(l)=2 l
\end{aligned}
$$

5. [2 points] Write an equation of the line between the points $(5,-7)$ and $(2,1)$.

$$
\text { slope }=\frac{1-(-7)}{2-5}=\frac{8}{-3}
$$

$$
y=-\frac{8}{3}(x-2)+1
$$

Is the line increasing, decreasing, horizontal or vertical?
6. [1 points] Simplify the expression $\frac{2 x^{3}+2 x^{2} y}{4 x^{2}+12 x y}$ by cancelling all common factors in both the numerator and denominator.

$$
\frac{2 x^{3}+2 x^{2} y}{4 x^{2}+12 x y}=\frac{2 x^{2}(x+y)}{4 x(x+3 y)} Z_{0}=\frac{x(x+y)}{2(x+3 y)}=\frac{x^{2}+x y}{2 x+6 y}
$$

7. [2 points] Sketch the graph of $f(x)=16-x^{2}$. Label any x - or y-intercepts in your sketch.

8. [2 points] Use the piecewise defined function $f(x)=\left\{\begin{array}{ll}x^{3} & x \leq 0 \\ \frac{x}{x+1} & x>0\end{array}\right.$.
a. Find $f(10)$.

$$
f(10)=\frac{10}{11}
$$

b. Determine x such that $f(x)=-8$.

$$
x=-2
$$

$x \leqslant 0: \quad x^{3}=-8 \Rightarrow x=-2$
$x>0 \quad \frac{x}{x+1}=-8$ never true
9. [1 points] Evaluate $\sin (5 \pi / 6)$ exactly.

$$
\sin \left(\frac{5 \pi}{6}\right)=1 / 2
$$

10. [1 points] Solve the equation $\sin (x)+1=0$ on the interval $0 \leq x<2 \pi$.

$$
\begin{aligned}
& \sin (x)+1=0 \Rightarrow \\
& \qquad \sin (x)=-1 \Rightarrow
\end{aligned}
$$

$$
x=\frac{3 \pi}{2}
$$

11. [1 points] In the right triangle below, $a=1$ and $c=4$. Determine the value of the tangent function at angle A.

$$
\begin{array}{r}
4^{2}=1^{2}+b^{2} \Rightarrow b^{2}=15 \Rightarrow b=\sqrt{15} \\
\tan (A)=\frac{\sqrt{15}}{4} \\
\tan (A)=\frac{\sqrt{15}}{4}
\end{array}
$$

12. [2 points] Sketch the graph of $f(x)=e^{x}-1$. Label any x - or y-intercepts, and draw any asymptotes with dashed lines. Give the equation of any asymptotes of $f(x)$.

Equation of asymptotes)? $\quad y=-1$
13. [1 points] Solve the equation $4+e^{3 x}=10$. exactl ll

$$
\begin{gathered}
4+e^{3 x}=10 \Rightarrow \\
e^{3 x}=6 \Rightarrow \\
3 x=\ln (6)
\end{gathered}
$$

$$
x=\frac{\ln (6)}{3}
$$

14. [2 points] Sketch the graph of $f(x)=\ln (x-3)$. Label any x - or y-intercepts, and draw any asymptotes with dashed lines. Give the equation of any asymptotes of $f(x)$.

Equation of asymptotes)? $x=3$
15. [1 points] Solve the equation $\frac{\ln (x+1)}{5}=3$. exactly.

$$
\begin{aligned}
\frac{\ln (x+1)}{5} & =3 \\
\ln (x+1) & =15 \\
x+1 & =e^{15}
\end{aligned}
$$

$$
x=e^{15}-1
$$

16. [1 points] Solve the inequality $x^{2} \geq 4$.

$$
x \geqslant 2 \text { or }-x \geqslant 2 \Rightarrow 2 \text { or } x \leq-2
$$

17. [2 points] Sketch the graph of $f(x)=3 \cos (x)$ on the interval $0 \leq x \leq 2 \pi$. Label any x - or y intercepts. Give the equation of any asymptotes of $f(x)$.

Equation of asymptotes)? hone
18. [2 points] Use the graph of $f(x)$ below to answer the questions.

a. Estimate $f(-2) \quad$ 1,5
b. Estimate an x-value such that $f(x)=3$.
\qquad

