There are 18 questions worth 25 points on this guiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [1 points] Determine the domain and range of $f(x) = \frac{1}{x^2} + 5$. Write your an swers in interal notation.

Domain: $(-\infty, 0) \cup (0, \infty)$ Range: $[5, \infty)$

2. [1 points] For $f(x) = 8 - x^2$ and $g(x) = \mathbf{g} + x$, find the composition $f \circ g$ and simplify your answer.

 $f(g(x)) = f(2+x) = 8 - (3+x)^2$ = 8 - (9+6x+x²) = -1+6x+x2

fog (x)=-1+6x+x2

3. [1 points] Write the expression $\frac{x^5y^8}{x^3v^{-1}z^2}$ in the form $x^ay^bz^c$. (That is, write the expression with all terms in the numerator.)

 $\frac{x^{5}y^{8}}{x^{3}y^{-1}y^{2}} = x^{5-3}y^{8-(-1)}z^{-2} =$

4. [1 points] A rectangle has a width w that is twice its length, ℓ . Find an expression for the area, A, of the rectangle in terms of its length, ℓ .

mea : l.w = l(21)

 $A(\ell) = 2\ell$

5. [2 points] Write an equation of the line between the points (5, -7) and (2, 1).

Slope = $\frac{1-(-7)}{2-5} = \frac{8}{-3}$

 $y = \frac{8}{3}(x-2)+1$ al?
decreasing

Is the line increasing, decreasing, horizontal or vertical?

v-1

6. [1 points] Simplify the expression $\frac{2x^3 + 2x^2y}{4x^2 + 12xy}$ by cancelling all common factors in both the numerator and denominator.

$$\frac{2x^{3}+2x^{2}y}{4x^{2}+12xy} = \frac{2x^{2}(x+y)}{4x(x+3y)}$$

$$\frac{2}{4} = \frac{x(x+y)}{2(x+3y)} = \frac{x^{2}+xy}{2x+6y}$$

7. [2 points] Sketch the graph of $f(x) = 16 - x^2$. Label any x- or y-intercepts in your sketch.

$$16 - x^2 = 0$$

 $(4-x)(4+x) = 0$
 $X = 4 \text{ or } x = -4$

- **8. [2 points]** Use the piecewise defined function $f(x) = \begin{cases} x^3 & x \le 0 \\ \frac{x}{x+1} & x > 0 \end{cases}$.
 - **a**. Find f(10).

b. Determine x such that f(x) = -8.

$$x = -2$$

$$X \le 0$$
: $X^3 = -8 \Rightarrow X = -2$
 $X > 0 = \frac{x}{x+1} = -8$ never true

9. [1 points] Evaluate $\sin(5\pi/6)$ exactly.

$$8in\left(\frac{5\pi}{6}\right) = \frac{1}{2}$$

10. [1 points] Solve the equation (x) + 1 = 0 on the interval $0 \le x < 2\pi$.

$$X = \frac{3\pi}{2}$$

11. [1 points] In the right triangle below, a = 1 and c = 4. Determine the value of the tangent function at angle A.

 $B 4^2 = 1^2 + 6^2 \implies 6^2 = 15 \implies 6 = \sqrt{15}$ $a = 1 \tan(A) = \frac{\sqrt{15}}{4}$

$$\tan(A) = \frac{\sqrt{15}}{4}$$

- 12. [2 points] Sketch the graph of $f(x) = e^x 1$. Label any x- or y-intercepts, and draw any asymptotes with dashed lines. Give the equation of any asymptotes of f(x).

- Equation of asymptote(s)? y = -1
- 13. [1 points] Solve the equation $4 + e^{3x} = 10$. Exactly.

$$4 + e^{8x} = 10 \implies$$
 $e^{3x} = 6 \implies$
 $3x = ln(6)$

$$\chi = \frac{\ln(6)}{3}$$

v-1

14. [2 points] Sketch the graph of $f(x) = \ln(x-3)$. Label any x- or y-intercepts, and draw any asymptotes with dashed lines. Give the equation of any asymptotes of f(x).

Equation of asymptote(s)? $\chi = 3$

15. [1 points] Solve the equation $\frac{\ln(x+1)}{5} = 3$. exactly.

$$\frac{\ln(x+t)}{5} = 3$$

$$ln(x+1) = 15$$

 $X+1 = e^{15}$

16. [1 points] Solve the inequality $x^2 \ge 4$.

$$x \geqslant 2$$
 or $-x \geqslant 2 \Rightarrow$

17. [2 points] Sketch the graph of $f(x) = 3\cos(x)$ on the interval $0 \le x \le 2\pi$. Label any x- or yintercepts. Give the equation of any asymptotes of f(x).

Equation of asymptote(s)? _

18. [2 points] Use the graph of f(x) below to answer the questions.

- a. Estimate f(-2).
- **b.** Estimate an *x*-value such that f(x) = 3.