Name: \qquad / 25

There are 25 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit. You should not be using a calculator on this (or any) quiz.

1. [9 points] Sand is poured onto a surface at a rate of $15 \mathrm{~cm}^{3} / \mathrm{sec}$, forming a conical pile whose base radius is exactly two times its height.
a. Since you know that the base radius is twice the height, write an equation relating r and h. Given that equation, what is the relationship between $\frac{d r}{d t}$ and $\frac{d h}{d t}$?
b. How fast is the height of the pile changing when the pile is 3 cm high? Use the formula $V=\frac{1}{3} \pi r^{2} h$ for computing the volume of the cone.
Write a complete sentence to answer the question. Units should be included in your answer.
2. [8 points] Consider the function $f(x)=\sqrt{4-x}$.
a. Find the linearization (linear approximation) $L(x)$ of the function $f(x)$ at $a=0$.
b. What is x if $f(x)=\sqrt{3.9}$? Give your answer as a fraction.
c. Use linearization or differentials to estimate $\sqrt{3.9}$. Clearly show your work.
3. [8 points] Let $f(x)=\left(4-x^{2}\right)^{2}$.
a. Find all critical points for $f(x)$. Show your work.
b. Determine the absolute maximum and absolute minimum of $f(x)$ on the interval $[0,3]$ or state that none exist. You must show your work to receive full credit. See the answer-blank below.
maximum value of $f(x)$ for x in [0,3]: \qquad
x-value(s) where the maximum value of $f(x)$ occurs: \qquad minimum value of $f(x)$ for x in $[0,3]$:
x-value(s) where the minimum value of $f(x)$ occurs: \qquad
