Name: \qquad Solutions \qquad
There are 25 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit. You should not be using a calculator on this (or any) quiz.

1. [9 points] Sand is poured onto a surface at a rate of $15 \mathrm{~cm}^{3} / \mathrm{sec}$, forming a conical pile whose base radius is exactly two times its height.
a. Since you know that the base radius is twice the height, write an equation relating r and h. Given that equation, what is the relationship between $\frac{d r}{d t}$ and $\frac{d h}{d t}$?

$$
r=2 h \Rightarrow \frac{d r}{d t}=2 \frac{d h}{d t}
$$

b. How fast is the height of the pile changing when the pile is 3 cm high? Use the formula $V=\frac{1}{3} \pi r^{2} h$ for computing the volume of the cone.
Write a complete sentence to answer the question. Units should be included in your answer.

$$
V=\frac{1}{3} \pi r^{2} h
$$

Method \#1 (the easy way)

$$
\begin{aligned}
& V=\frac{1}{3} \pi(2 h)^{2} h \\
& V=\frac{4}{3} \pi h^{3} \\
& \frac{d V}{d t}=\frac{4}{3} \pi\left(3 h^{2}\right) \frac{d h}{d t} \\
& \text { Know } \frac{d V}{d t}=15 \mathrm{~cm}^{3} / \mathrm{s} \\
& \text { want } \frac{d h}{d t} \text { when } h=3 \\
& 15=\frac{4}{3} \pi(3)\left(3^{2}\right) \frac{d h}{d t} \Rightarrow \\
& \frac{d h}{d t}=\frac{15}{36 \pi}=\frac{5}{12 \pi}
\end{aligned}
$$

Method \#2 (the hardway)

$$
\begin{aligned}
& \frac{d v}{d t}=\frac{\pi}{3}\left[2 r \frac{d r}{d t} n+\frac{d u}{d t} r^{2}\right] \\
& 15=\frac{\pi}{3}\left[2(6)\left(2 \frac{d n}{d t}\right)(3)+\frac{d h}{d t}(36)\right] \\
& 15=24 \pi \frac{d h}{d t}+12 \pi \frac{d h}{d t} \\
& \frac{d u}{d t}=\frac{15}{36 \pi}=\frac{5}{12 \pi}
\end{aligned}
$$

Answer: When the pile is 3 cm high, the height is changing (increasing) at a rate of

$$
\frac{5}{12 \pi} \mathrm{~cm} / \mathrm{s}
$$

October 29, 2023
2. [8 points] Consider the function $f(x)=\sqrt{4-x}$.
a. Find the linearization (linear approximation) $L(x)$ of the function $f(x)$ at $a=0$.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{2}(4-x)^{-1 / 2}(-1)=\frac{-1}{2 \sqrt{4-x}} \quad f(0)=2 \\
f^{\prime}(0) & =\frac{-1}{4} \\
L(x) & =-\frac{1}{4}(x-0)+2 \\
\text { b. What is } x & \text { if } f(x)=\sqrt{3.9} \text { ? Give your answer as a fraction. } \quad 4-x=3-\frac{1}{10} \text { so } x=\frac{1}{10}
\end{aligned}
$$

c. Use linearization or differentials to estimate $\sqrt{3.9}$. Clearly show your work.

$$
\begin{aligned}
& L\left(\frac{1}{10}\right)=-\frac{1}{4}\left(\frac{1}{10}\right)+2=2-\frac{1}{40}=\frac{79}{40} \\
& \text { So } \sqrt{3.9} \approx 2-\frac{1}{40}=\frac{79}{40}
\end{aligned}
$$

3. [8 points] Let $f(x)=\left(4-x^{2}\right)^{2}$.
a. Find all critical points for $f(x)$. Show your work.

$$
\begin{aligned}
& f^{\prime}(x)=2\left(4-x^{2}\right)(-2 x) \\
& f^{\prime}(x)=0 \Rightarrow 4-x^{2}=0 \Rightarrow x=20 r x=-2 \quad \text { OR }-2 x=0 \Rightarrow x=0
\end{aligned}
$$

b. Determine the absolute maximum and absolute minimum of $f(x)$ on the interval $[0,3]$ or state that none exist. You must show your work to receive full credit. See the answer-blank below.
end pt $\rightarrow f(0)=\left(4-0^{2}\right)^{2}=16$

$$
\begin{aligned}
& f(-2)=(4-4)^{2}=0 \text { as well } \\
& \text { but }-2 \text { is not in our interval }
\end{aligned}
$$

criticalpl $\rightarrow f(2)=\left(4-2^{2}\right)^{2}=0$
end pt $\rightarrow f(3)=\left(4-3^{2}\right)^{2}=(4-9)^{2}=25$
maximum value of $f(x)$ for x in [0,3]: 25
x-values) where the maximum value of $f(x)$ occurs: $\quad \chi=3$
minimum value of $f(x)$ for x in $[0,3]$: \qquad
x-values) where the minimum value of $f(x)$ occurs: $\quad x=2$

