October 3, 2024		Math F251X: Quiz 5	
Name: Key			/ 25
			/ _ •
Please circle your instructor's name:	Leah Berman	Jill Faudree	James Gossell

There are 25 points possible on this quiz. Any outside materials (textbook, course notes, calculator) are not allowed. For full credit, show all work in a way someone else can follow it.

1. (12 points) Compute the derivatives of the following functions:

(a)
$$f(x) = 3 \sec(x) - \sin(x) + \tan(\pi/4)$$

 $f'(X) = 3 \sec x \tan x - \cos x + 0$

(b)
$$g(x) = \left(x^4 - 6x + x^{-\frac{1}{3}}\right)^5$$

 $g'(x) = 5\left(x^4 - 6x + x^{-\frac{1}{3}}\right)^4 \cdot \left(4x^3 - 6 - \frac{1}{3}x^{-\frac{4}{5}}\right)$

(c)
$$y = \tan\left(\frac{x^4 - 7}{x}\right)$$

$$\frac{dy}{dx} = \sec^2\left(\frac{x^4 - 7}{x}\right) \cdot \frac{4x^3 \cdot x - (x^4 - 7)}{x^2}$$

(d)
$$r(\theta) = \theta^3 \cot(2\theta)$$

$$r'(\theta) = 3\theta^2 \cot(2\theta) + \theta^3 (-\csc(2\theta) \cot(2\theta).2)$$

October 3, 2024

.

2. (9 points) A giant pendulum is pulled back and released so that it begins swinging back and forth. Its horizontal position is given by

$$x(t) = a\cos\left(\frac{t}{2}\right)$$

where a is a constant representing the initial horizontal position, t measures time in seconds, and x measures the position to the right of equilibrium in feet. (See the diagram below.)

(a) Find $\frac{dx}{dt}$, the derivative of the horizontal position function.

$$\frac{dx}{dt} = -a\sin\left(\frac{t}{z}\right) \cdot \frac{1}{2}$$

(b) Using your answer in part (a), find the **initial horizontal velocity** of the pendulum. Interpret your answer and explain if this makes sense in the context of the problem.

$$\frac{dx}{dt}\Big|_{t=0}^{t=-\alpha\sin(0)} = \frac{1}{2} = 0 \quad \text{ft/sec} \to \text{Yes, this make sense}$$
since the pendulum starts

(c) After π seconds, the pendulum is moving to the left at a rate of 14 feet per second. Using this information, solve for the **initial position** *a*.

$$\frac{dx}{dt}\Big|_{t=Tr} = -\alpha \sin\left(\frac{\pi}{2}\right), \frac{1}{2} = -\frac{4}{2} = -|4| \Rightarrow \alpha = 28$$

The pendulum starts 28 feet to the right of equilibrium.

3. (4 points) Suppose f(x) and g(x) are differentiable functions, and $h(x) = f\left(\sqrt{g(x)}\right)$. Given that f(3) = 3, f'(3) = 6, g(3) = 9, and g'(3) = 12, find $\mathbf{h}'(3)$ and show your work.

$$h'(x) = f'(\sqrt{g(x)}) \cdot \frac{1}{2\sqrt{g(x)}} \cdot g'(x)$$

$$h'(3) = f'(\sqrt{g}) \cdot \frac{1}{2\sqrt{g}} \cdot 12$$

$$= f'(3) \cdot \frac{12}{6} = 6 \cdot 2 = [12]$$