October 10, 2024		Math F251X: Quiz 6	
Name: Solutions			/ 25
Please circle your instructor's name:	Leah Berman	Jill Faudree	James Gossell

There are 25 points possible on this quiz. Any outside materials (textbook, course notes, calculator) are not allowed. For full credit, show all work in a way someone else can follow it.

1. (12 points) Compute the derivatives of the following functions:

(a)
$$f(x) = \frac{x + \arcsin(3x)}{5} = \frac{1}{5} \left(x + \arcsin(3x) \right)$$

 $f'(x) = \frac{1}{5} \left[1 + \frac{1}{\sqrt{1 - (3x)^2}} \cdot 3 \right] = \frac{1}{5} \left(1 + \frac{3}{\sqrt{1 - 9x^2}} \right)$

(b)
$$g(x) = 5^{2x} - 3x^2$$

 $g'(x) = \ln(5) \cdot 5^{2x} \cdot 2 - 6x = 2\ln(5) 5^{2x} - 6x$

(c)
$$y = e^{-x} \sin(x^2)$$

 $y' = -e^{-x} \sin(x^2) + e^{-x} (\cos(x^2))(2x) = -e^{-x} \sin(x^2) + 2x e^{-x} \cos(x^2)$
 $= e^{-x} (2x \cos(x^2) - \sin(x^2))$

(d)
$$s(t) = \ln\left(\sqrt{t^2 + t}\right) = \frac{1}{2} \ln\left(t^2 + t\right)$$

 $s'(t) = \frac{1}{2} \left(\frac{1}{t^2 + t}\right) (2t+1) = \frac{2t+1}{2(t^2+t)}$ OR
 $s'(t) = \frac{1}{(t^2+t)^{\frac{1}{2}}} \cdot \frac{1}{2}(t^2+t) (2t+1)$

2. (6 points) Use implicit differentiation to find $\frac{dy}{dx}$ for $x + \cos(xy) = y^2 + x^2$.

$$\begin{aligned} \left| - \sin(xy) \left[1 \cdot y + x \cdot \frac{dy}{dx} \right] &= 2y \frac{dy}{dx} + 2x \\ 1 - y \sin(xy) - x \sin(xy) \frac{dy}{dx} &= 2y \frac{dy}{dx} + 2x \\ \left(-x \sin(xy) - 2y \right) \frac{dy}{dx} &= 2x - 1 + y \sin(xy) \\ \frac{dy}{dx} &= \frac{2x - 1 + y \sin(xy)}{-x \sin(xy) - 2y} = \frac{1 - 2x - y \sin(xy)}{x \sin(xy) + 2y} \end{aligned}$$

3. (7 points) A camera at ground level is 100 meters from the landing site of a parachutist who is landing vertically. Let *h* be the height of the parachutist above the ground and let θ be the angle of elevation formed between the camera lens and the ground. (See figure.)

