October 24, 2024		Math F251X: Quiz 7	
Name:			/ 25
Please circle your instructor's name:	Leah Berman	Jill Faudree	James Gossell

There are 25 points possible on this quiz. Any outside materials (textbook, course notes, calculator) are not allowed. For full credit, show all work in a way someone else can follow it.

1. (10 points) Water is draining from the bottom of a cone-shaped funnel at a rate of 0.1 cubic feet per second. The height of the funnel is 2 feet and the radius at the top of the funnel is 1 foot.

Note that the formula for the volume of water in the cone is given by $V = \frac{1}{3}\pi r^2 h$.

Note that you can use similar triangles to find a relationship between r and h.

a) Find the rate at which the height of the water in the funnel is changing when the height of the water (*h*) is 1 foot.

b) Using complete sentaces, **explain what your answer in part (a) means** in the context of this problem. Include units in your explaination.

October 24, 2024

- 2. (7 points) Complete the following steps to approximate $\sqrt[3]{30}$ without a calculator:
 - (a) Find the linear approximation L(x) to $f(x) = \sqrt[3]{x}$ at a = 27.

(b) Use L(x) to approximate $\sqrt[3]{30}$. Write your answer as a fraction.

3. (8 points) Find the absolute maxima and minima for the function $f(x) = x(x-4)^3$ over the interval [0,5]. Show your work, including relevant computations.

maximum value of f(x):

minimum value of f(x):