November 7, 2024		Math F251X: Quiz 9		
Name: Jolu	rtions		/ 25	
Please circle your instructor's name:	Leah Berman	Jill Faudree	James Gossell	

There are 25 points possible on this quiz. Any outside materials (textbook, course notes, calculator) are not allowed. For full credit, show all work in a way someone else can follow it.

1. (9 points) Find the radius, r, and height, h, of the open-topped cylinder with volume 8π that has the least amount of surface area. The formulas for the volume, V, and surface area, S, are given below.

UAF Calculus I

1

November 7, 2024

2. (8 points) Use L'Hôpital's Rule to evaluate the limits below. Indicate your use of L'Hôpital's Rule with an *h* above the equal sign.

(a)
$$\lim_{x \to 0} \frac{e^{2x} - 2x - 1}{5x^2} \stackrel{h}{=} \lim_{h \to 0} \frac{2e^2 - 2}{10x} \stackrel{h}{=} \lim_{h \to 0} \frac{4e^2}{10} = \frac{4}{10} = \frac{2}{5}$$

forming forming

(b)
$$\lim_{x \to \infty} \sqrt{x} e^{-x} = \lim_{x \to \infty} \frac{\sqrt{x}}{e^{x}} = \lim_{x \to \infty} \frac{\frac{1}{2}\sqrt{x}}{e^{x}} = \lim_{x \to \infty} \frac{1}{2\sqrt{x}e^{x}} = 0$$

form form form form form form form

3. (8 points) Evaluate the integrals below.

(a)
$$\int (3x^5 + \sin(x) + e^x + \pi^2) dx = \frac{3}{6} \times (-\cos 6x) + e^x + \pi^2 \times + C$$

(b)
$$\int \frac{3x + x^{1/3}}{x} dx = \int \frac{3x}{x} + \frac{x}{x} dx = \int (3 + x^{2/3}) dx$$

= $3x + \frac{x}{x} + C = 3x + 3x^{2/3} + C$