Solutions

There are 16 questions worth 40 points on this quiz. No aids (book, calculator, etc.) are permitted. **Show all work for full credit.** Give **exact** numerical answers such as $\sqrt{7}$ or $\frac{5}{\pi}$.

Algebra

- 1. [2 points] Simplify each expression below.
 - **a.** Write the expression $\frac{(xyz)^3}{x^4y^{-2}z}$ in the form $x^ay^bz^c$. That is, write the expression with all terms in the numerator.

b. Cancel any common factors in both the numerator and denominator for the expression

$$\frac{2y^2}{3x}$$

2. [2 points] Solve the following equations for x (giving exact answers).

a.
$$5^x + 1 = 12$$
.

b. $\ln(x+3) = \frac{1}{2}$.

a.
$$5^{x} + 1 = 12$$
.
 $5^{x} = 11$
 $h(5^{x}) = \ln(11)$
 $x \ln(5) = \ln(11)$

$$x = \frac{\ln(11)}{\ln(5)}$$

$$x = e^{\frac{1}{2}}$$

3. [3 points] Solve the inequality $x^2 < 4$ for x. Write your answer in interval notation.

$$-2 < x < 2$$

(-2,2)

Geometry and Trigonometry

4. [2 points] A circular field has an area of 83 square feet. Determine its radius. Include units with your answer.

$$A = \pi r^{2}$$
 $r = \sqrt{\frac{83}{\pi}}$ ft
 $83 = \pi r^{2}$
 $r^{2} = 83/\pi$

$$\Gamma = \sqrt{\frac{83}{\pi}} \text{ ft}$$

5. [2 points] Write an equation of the line between the points (-3,2) and (4,0).

$$m = 8 lope = \frac{\Delta y}{\Delta x} = \frac{0-2}{4-(-3)} = \frac{-2}{7}$$

$$y = \frac{-2}{7}(x-4)$$

6. [1 point] Evaluate $\sin(5\pi/6)$ exactly.

$$Sin\left(\frac{57}{6}\right) = \frac{1}{2}$$

7. [2 points] Solve the equation $\cos(x) = 0$ on the interval $0 \le x < 2\pi$. Assume x is in radians.

$$X=\frac{\pi}{2},\frac{3\pi}{2}$$

8. [2 points] In the right triangle below, $\sin(\theta) = \frac{1}{4}$. Determine $\tan(\theta)$.

$$tan(\theta) = \frac{1}{\sqrt{15}}$$

Functions

9. [2 points] Determine the domain and range of $f(x) = 3 + \sqrt{x}$. Write your answer in interval nota-

donain > 1x doesn't accept negative numbers.

range -> The "+3" shifts Ix up 3.

range: $[3, \infty)$

10. [2 points] For $f(x) = x - x^2$, find f(a+2). Simplify your answer by multiplying out and collecting

 $f(a+2) = a+2 - (a+2)^2 = a+2 - (a^2+4a+4)$

$$= a + 2 - a^{2} - 4a - 4$$

$$= -a^{2} - 3a - 2$$

 $f(a+2) = -a^2 - 3a - 2$

- **11. [2 points]** Use the piecewise defined function $f(x) = \begin{cases} x+1 & x \le 0 \\ \frac{1}{x} & x > 0 \end{cases}$.
 - **a**. Find f(-2.4).

- -2.420. So use topfunction f(-2.4) = -2.4 + l = -1.4
- **b.** Determine x such that f(x) = 4.

- X+1=4 means x=3; not <0 $\frac{1}{x} = 4$ means $x = \frac{1}{4} > 0$
- **12.** [3 points] Use the graph of f(x) below to answer the questions.

a. Estimate f(3).

b. **Estimate** an *x*-value such that f(x) = -2.

On the interval frame $x \approx -3$. 6

on the interval frame x = 1 to x = 3, is f(x) increasing, decreasing, or constant?

mereasing

Graphing

For problems 13-16, graph each function on the axes provided. Draw any asymptotes with dashed lines. Fill in the blanks identifying any x- or y-intercepts and the **equations** of any asymptotes. Write **none** if no intercepts or asymptotes exist.

13. [4 points] $f(x) = 4 - x^2$. Up Side down parabola Shifted up f

x intercepts: X=2, X=-2

y-intercepts: y = 4

asymptote(s): ______none__

14. [4 points] $f(x) = e^x + 2$ \checkmark Shifted up²

x intercepts: none

y-intercepts: y = 3

asymptote(s): y = 2 (horizontal)

15. [4 points] $f(x) = \ln(x-3)^{6}$

x intercepts: $\times = 4$

y-intercepts: hone

asymptote(s): X=3 (vertical)

16. [4 points] $f(x) = -\cos(x)$ on the interval $0 \le x \le 3\pi$.

 $\frac{1}{2}\pi$ $\frac{\pi}{2}\pi$ $\frac{5\pi}{2}3\pi$ $\frac{5\pi}{2}3\pi$

x intercepts: $X = \frac{7}{2}$, $3\frac{7}{2}$, $5\frac{7}{2}$

y-intercepts: y = -1

asymptote(s): hone