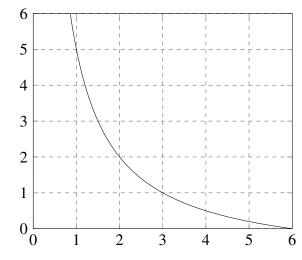
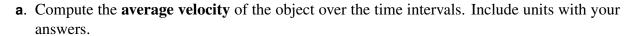
Name: _____

. / 25


There are 25 points possible on this quiz. No aids (book, calculator, etc.) are permitted. **Show all work for full credit.**

- **1. [11 points]** Let P(2,2) be a point on the graph of $f(x) = \frac{6-x}{x}$.
 - **a**. Find the slope of the secant line passing through P and the point Q(1, f(1)).
 - **b.** The table below lists the slope of the secant line passing through the point P and the point Q(x, f(x)) for several values of x.

X	1.9	1.99	1.999	2.001	2.01	2.1
` /	2.157895					
m_{sec}	-1.57895	-1.50754	-1.50075	-1.49925	-1.49254	-1.42857


Use the information in the table to estimate the slope of the tangent line to f(x) at the point P(2,2).

- **c**. Use the slope from part (c) above to write an equation of the tangent line at point P(2,2).
- **d**. Below is a sketch of the graph of $f(x) = \frac{6-x}{x}$.
 - (a) Sketch the **tangent line** to the graph at the point P(2,2). Label it with the word TANGENT.
 - (b) Sketch the **secant line** passing through P(2,2) and Q(1,f(1)). Label it with the word SECANT.

September 5, 2024 Math 251: Quiz 2

2. [8 points] The height, h, of an object is given by the expression $h(t) = 10 - \sqrt{t}$ where h is measured in meters and t is measured in seconds.

(i)
$$[0,1]$$

- b. Using the calculations you did in part (a) above, estimate the instantaneous velocity of the object when t = 1. Include units with your answer.
- **c.** What do your calculations in part (b) above indicate about whether the object appears to be rising (gaining height) or dropping (losing height)?
- **3.** [6 points] An object is attached to a spring suspended from above. The height of the object above the ground is given by $h(t) = 4\cos(\pi t) + 6$ where h is in inches and t is in seconds.
 - **a**. Calculate the length of the spring at $t = \frac{1}{3}$ seconds and $t = \frac{2}{3}$ seconds. Include units in your final answers.

$$h\left(\frac{1}{3}\right) =$$

$$h\left(\frac{2}{3}\right) =$$

b. Find the **average velocity** of the object over the time interval $\left[\frac{1}{3}, \frac{2}{3}\right]$. Show your work and include units in your final answer.