September 12, 2024		Math F251X: Quiz 3	
Name: Solutions			/ 25
Please circle vour instructor's name:	Leah Berman	Jill Faudree	James Gossell

There are 25 points possible on this quiz. Any outside materials (textbook, course notes, calculator) are not allowed. For full credit, show all work in a way someone else can follow it.

1. (13 points) The graph of a function H(x) is shown below. Use the graph of H(x) to answer each question below. If the limit is infinite, indicate that with ∞ or $-\infty$. If the value does not exist or is undefined, write DNE.

- (h) Based on the information from the graph, write the domain of H(x) using interval notation: $(-\infty, -2) \cup (-2, 2) \cup (2, \infty)$
- (i) Observe from the graph that $\lim_{x \to 3} H(x) = 2$. Determine $\lim_{x \to 3} \frac{5H(x) - 1}{x^2H(x)} =$ $\lim_{x \to 3} \frac{5H(x) - 1}{x^2H(x)} = \frac{5(2) - 1}{4 \cdot 2} = \frac{9}{8}$
- (j) List all x-values in the set $(-\infty, \infty)$ where the function H(x) is not continuous. x = -4, -2, 2

Math F251X: Quiz 3

× .

September 12, 2024

2. (6 points) Use algebra to evaluate the limits below. You must show your work to earn full credit **and** your work will be graded. (That is, you need to **write your mathematics** clearly and correctly. If you do not write $\lim_{x\to \dots} \cdots$ where it is necessary your answer will not be completely correct.)

(a)
$$\lim_{x \to 3} \frac{x^2 + x - 6}{(x+3)^2} = \frac{3^2 + 3 - 6}{(3+3)^2} = \frac{12 - 6}{36} = \frac{6}{36} = \frac{12}{6}$$

(b)
$$\lim_{h \to 0} \frac{\frac{4}{h+5} - \frac{4}{5}}{h} = \lim_{h \to 0^{-1}} \frac{1}{h} \left(\frac{4}{h+5} \left(\frac{5}{5} \right) - \frac{4}{5} \left(\frac{h+5}{h+5} \right) \right)$$

$$= \lim_{h \to 0^{-1}} \frac{1}{h} \left(\frac{20 - 4(h+5)}{5(h+5)} \right) = \lim_{h \to 0^{-1}} \frac{1}{h} \left(\frac{20 - 4h - 20}{5(h+5)} \right)$$

$$= \lim_{h \to 0^{-1}} \frac{1}{h} \left(\frac{-4h}{5(h+5)} \right) = \lim_{h \to 0^{-1}} \frac{-4}{5(h+5)} = \frac{-4}{45}$$

3. (6 points) Let

$$f(x) = \begin{cases} \frac{x^2 + 4x - 5}{(x+6)(x-1)} & x < 1\\ 3\ln(x) & x \ge 1 \end{cases}$$

Show your work clearly, using limit notation, to answer the following:

0

(a)
$$\lim_{x \to 1^{-}} f(x) = \lim_{X \to 0^{-}} \frac{x^2 + 4x - 5}{(x + 6)(x - 1)} = \lim_{X \to 0^{-}} \frac{(x + 5)(x + 1)}{(x + 6)(x - 1)}$$

= $\lim_{x \to 0^{+}} \frac{x + 5}{x + 6} = \frac{1 + 5}{1 + 6} = \begin{bmatrix} 5 \\ -7 \end{bmatrix}$
(b) $\lim_{x \to 1^{+}} f(x) = \lim_{X \to 0^{+}} 3 \ln(x) = 3 \ln(1) = 0$
(c) $f(1) = 0$

- (d) Based on your answers to parts (a), (b) and (c), check the true statement(s) below:
 - □ f is continuous at x = 1.
 □ f has an infinite discontinuity at x = 1.
 □ f has a removable discontinuity at x = □ None of the above.
 1.
 ✓ f has a jump discontinuity at x = 1.