Name: \qquad
\qquad
There are 25 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [4 points] A population of voles is taking over a garden. The table below indicates the size of the population measured at the middle of each week during a summer.

t (weeks)	1	2	3	4	5	6
n (voles)	7	15	31	63	73	82

a. Find the average rate of change of the population over the entire measurement period.

$$
\frac{82-7}{6-1}=\frac{75}{5}=15 \text { voles/ week }
$$

b. Find the average rate of change of the population from week 3 to week 5 .

$$
\frac{73-31}{5-3}=\frac{42}{2}=21 \text { voles / week }
$$

2. [9 points] Use the graph of the function of $f(x)$ to answer the following questions.

a. $\lim _{x \rightarrow 0^{+}} f(x)=3$
b. $\lim _{x \rightarrow 0^{-}} f(x)=1$
c. $\lim _{x \rightarrow 0} f(x)=$ DNE
d. $f(0)=$ \qquad
e. $f(5)=4$
f. $f(-6)=\underline{O}$
g. $\lim _{x \rightarrow-4^{+}} f(x)=-\infty$
h. $\lim _{x \rightarrow 5} f(x)=1$
i. $\lim _{x \rightarrow-6} f(x)=\underline{O}$
3. [6 points] Compute the following limits. For each limit, justify your answer with a sentence or two.
a. $\begin{aligned} \lim _{x \rightarrow 8^{+}} \frac{2+x}{(x-8)^{2}}= & \begin{array}{l}\lim _{x \rightarrow 8^{+}} 2+x=10>0 \\ \lim _{x \rightarrow 8^{+}}(x-8)^{2}=0\end{array} \\ & (x-8)^{2}>0\end{aligned} \quad \frac{10}{0^{+}} \Rightarrow+\infty$
b. $\lim _{x \rightarrow \pi^{+}} \frac{\sqrt{2}}{\sin (x)}=-\infty \quad$ As $x \rightarrow \pi^{+}, \sin (x) \rightarrow 0^{-}$.
$\sin (x)$

4. [6 points] On the axes below, sketch the graph of the function

$$
f(x)= \begin{cases}2-x & x<1 \\ 3 & x=1 \\ \frac{1}{1-x} & x>1\end{cases}
$$

Then compute, with brief justification, the requested values in the table.

UAF Calculus I

Value	Justification
$f(1)=$ 3	The function definition
$\lim _{x \rightarrow 1^{-}} f(x)=$	$\lim _{\substack{ \\ x \rightarrow 1^{-}}} 2-X=2-1=1$
$\lim _{x \rightarrow 1} f(x)=$	$\lim _{\substack{ \\ \lim _{x \rightarrow 1^{-}} \\ x \rightarrow 1^{+}}} f(x)=1$
$D N E$	

