Name: \qquad
There are 25 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [4 points]
a. Why is the following not a true statement? $\quad \frac{x^{2}-6 x}{x}=x-6$

We can't set $x=0$ in the left hand sade, but $x=0$ is legal in the right-hand side.
b. Nevertheless, explain why the following equation is correct. $\quad \lim _{x \rightarrow 0} \frac{x^{2}-6 x}{x}=\lim _{x \rightarrow 0} x-6$ Limits of expressions that differ at a single point are the same. "Limits dan't care albert me point."
2. [4 points] Compute $\lim _{x \rightarrow 5} \frac{\frac{1}{5}-\frac{1}{x}}{5-x}$.

$$
\begin{aligned}
\lim _{x \rightarrow 5} \frac{\frac{1}{5}-\frac{1}{x}}{5-x} & =\lim _{x \rightarrow 5} \frac{\frac{x-5}{5 x}}{5-x} \\
& =\lim _{x \rightarrow 5} \frac{-\frac{(5-x)}{5 x}}{(5-x)} \\
& =\lim _{x \rightarrow 5}-\frac{1}{5 x}=-\frac{1}{25} .
\end{aligned}
$$

3. [4 points] Compute $\lim _{h \rightarrow 0} \frac{(2+h)^{2}-4}{h}$

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{(2+h)^{2}-4}{h} & =\lim _{h \rightarrow 0} \frac{4+4 h+h^{2}-4}{h} \\
& =\lim _{h \rightarrow 0} \frac{(4+h) h}{h} \\
& =\lim _{h \rightarrow 0} 4+h=4
\end{aligned}
$$

4. [6 points] Consider the function $f(x)= \begin{cases}\frac{3}{1-x} & x \leq 0 \\ 3 \sin (x) & x>0\end{cases}$
a. In the diagram below, graph $f(x)$.

b. Explain why $f(x)$ isn't continuous at $x=0$.

$$
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{-}} f(x) \text { so } \lim _{x \rightarrow 0} f(x) \text { does not exist }
$$

5. [4 points] Use the Intermediate Value Theorem to justify the claim that there exists a number x satisfying $2^{x}-x-4=0$.

$$
\begin{aligned}
& \text { Let } f(x)=2^{x}-x-4 . \\
& \text { Notice } f(0)=2^{0}-0-4=-3<0 \quad \mathrm{al} \\
& \quad f(3)=2^{3}-3-4=1>0 .
\end{aligned}
$$

Sucre $f(y)$ is contincomen, thee is an in $[0,3]$ whee $f(x)=0$.

