Name: \qquad
There are 22 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [4 points]
a. Why is the following not a true statement? $\quad \frac{(x-3)(x-2)}{x-2}=x-3$

We corot set $x=2$ in the left hand side, but we can set $x=2$ in the vight-hand side.
b. Nevertheless, explain why the following equation is correct. $\lim _{x \rightarrow 0} \frac{(x-3)(x-2)}{x-2}=\lim _{x \rightarrow 0} x-3$

Limits of expressions that differ ot one pout ore the sane. "Limits don't core about one point."
2. [4 points] Compute $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}$

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2} & =\lim _{x \rightarrow 2} \frac{(x-2)(x+2)}{x-2} \\
& =\lim _{x \rightarrow 2} x+2
\end{aligned}
$$

$$
=4
$$

3. [4 points] Compute $\lim _{h \rightarrow 0} \frac{\frac{1}{5+h}-\frac{1}{5}}{h}$.

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{\frac{1}{5+h}-\frac{1}{5}}{h} & =\lim _{h \rightarrow 0} \frac{5-(5+h)}{5(5+h)} \\
& =\lim _{h \rightarrow 0} \frac{-h}{5(5+h) h} \frac{1}{h} \\
& =\lim _{h \rightarrow \infty} \frac{-1}{5(5+h)}=-\frac{1}{25}
\end{aligned}
$$

4. [6 points] Consider the function $f(x)= \begin{cases}\frac{2}{x-1} & x \leq 0 \\ 2 \cos (x) & x>0\end{cases}$
a. In the diagram below, graph $f(x)$.

b. Explain why $f(x)$ isn't continuous at $x=0$.

$$
\lim _{x \rightarrow 0^{+}} f(x) \neq \lim _{x \rightarrow 0^{+}} f(x) \quad \text { so } \lim _{x \rightarrow 0} f(x) \text { does not exist. }
$$

5. [4 points] Use the Intermediate Value Theorem to justify the claim that there exists a number x satisfying $\sin (x)-2 x+1=0$.

$$
\begin{aligned}
& \text { Let } f(x)=\sin (x)-2 x+1 . \\
& \\
& \text { Notice } f(0)=\sin (0)-2 \cdot 0+1=1>0 . \\
& \\
& \text { Also, } \quad \begin{aligned}
f(2 \pi) & =\sin (2 \pi)-2(2 \pi)+1 \\
& =-4 \pi+1 \approx-12<0 .
\end{aligned}
\end{aligned}
$$

Since $f(x)$ is continucers, the IVT implies
the is an x in $[0,2 \pi]$ with. $f(x)=0$.

