Name: \qquad
There are 30 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [15 points] Compute the derivatives of the following functions.
a. $f(x)=2+\sqrt{x}-e^{x}$

$$
f^{\prime}(x)=0+\frac{1}{2} x^{-1 / 2}-e^{x}=\frac{1}{2} x^{-1 / 2}-e^{x}
$$

b. $f(r)=\frac{3}{r^{3}}=3 r^{-3}$

$$
f^{\prime}(r)=-q r^{-4}=\frac{-q}{r^{4}}
$$

c. $f(x)=\frac{\sqrt[3]{x}+5}{x}$. Hint: Don't bother with the quotient rule.

$$
\begin{aligned}
f(x) & =x^{\frac{1}{3}-1}+5 x^{-1} \quad f^{\prime}(x)=\frac{-2}{3} x^{-5 / 3}-5 x^{-2} \\
& =x^{-\frac{2}{3}}+5 x^{-1}
\end{aligned}
$$

d. $f(x)=x^{-\frac{1}{2}} e^{x}$

$$
f^{\prime}(x)=-\frac{1}{2} x^{-3 / 2} e^{x}+x^{-1 / 2} e^{x}
$$

e. $f(x)=\frac{x^{2}+1}{x^{2}-1}$

$$
\begin{aligned}
f^{\prime}(x) & =\frac{2 x\left(x^{2}-1\right)-2 x\left(x^{2}+1\right)}{\left(x^{2}-1\right)^{2}} \\
& =\frac{-4 x}{\left(x^{2}-1\right)^{2}}
\end{aligned}
$$

2. [5 points] A population of moose is declining. The population at time t is

$$
P(t)=\frac{1000}{1+t}
$$

where P is the number of moose and where t is measured in years.
Compute the rate of change of the moose population, with units, at time $t=4$ years.

$$
\begin{aligned}
& P^{\prime}(t)=\frac{0 \cdot(1+t)-1000 \cdot 1}{(1+t)^{2}}=\frac{-1000}{(1+t)^{2}} \\
& P^{\prime}(4)=\frac{-1600}{25}=-40 \text { noose/ year }
\end{aligned}
$$

3. [6 points] A particle is moving along a line, and its position x as a function of time t is

$$
x(t)=\left(1-t^{2}\right) e^{t}
$$

a. Compute the velocity of the particle.

$$
\begin{aligned}
x^{\prime}(t) & =-2 t e^{t}+\left(1-t^{2}\right) e^{t} \\
& =\left(1-2 t-t^{2}\right) e^{t}
\end{aligned}
$$

b. Compute the acceleration of the particle.

$$
\begin{aligned}
x^{\prime \prime}(t) & =(-2-2 t) e^{t}+\left(1-2 t-t^{2}\right) e^{t} \\
& =-\left(1+4 t+t^{2}\right) e^{t}
\end{aligned}
$$

4. [4 points] Find the formula for the tangent line to the curve $y=x-x^{3}$ at $x=2$.
(4)

$$
\begin{aligned}
& x=2 \quad y=2-2^{3}= \\
& y^{\prime}=1-3 x^{2} \\
& x=2 \quad y^{\prime}=1-3 \cdot 4 \\
& \\
& =-11
\end{aligned}
$$

@

