Name: \qquad Solutions \qquad
There are 25 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [5 points]

$$
f(x)=x^{-1}
$$

a. Compute the linear approximation of $f(x)=1 / x$ at $x=10$.

$$
\begin{aligned}
f(10) & =1 / 10 \\
f^{\prime}(x) & =-x^{-2} \\
f^{\prime}(10) & =\frac{-1}{100}
\end{aligned}
$$

$$
L(x)=\frac{1}{10}-\frac{1}{100}(x-10)
$$

b. Use your answer above to find a decimal approximation for $1 / 11$.

$$
\frac{1}{11}=f(11) \approx L(11)=\frac{1}{10}-\frac{1}{100}(11-10)=\frac{1}{10}-\frac{1}{100}=0.1-0.01=0.09
$$

2. [8 points] A girl flies a kite at a height of 300 ft . A wind blows the kite horizontally at a rate of 25 $\mathrm{ft} / \mathrm{sec}$. How fast must she let out the string for the kite when the kite is 500 ft away from her?

girl

$$
\begin{aligned}
& \frac{d a}{d t}=25 \mathrm{ft} / \mathrm{s} \quad \text { Find } \frac{d c}{d t} \text { when } c=500 \mathrm{ft} \\
& a^{2}+300^{2}=c^{2}
\end{aligned}
$$

$$
2 a \frac{d a}{d t}=2 c \frac{d c}{d t}
$$

(need a : when $c=500 \quad a^{2}+300^{2}=500^{2}$ implies $a=400$.
Plugin: $2.400 \cdot 25=2.500 \cdot \frac{d c}{d t}$

$$
\frac{d c}{d t}=\frac{10,000}{500}=20 \mathrm{ft} / \mathrm{s} \text { \& How fast the string must } \begin{aligned}
& \text { be let out. }
\end{aligned}
$$

3. [8 points] A population of bacteria is growing exponentially. At time $t=0$ minutes there are 500 bacteria. At time $t=30$ minutes there are 1200 bacteria. Find an expression for $P(t)$, the population of the bacteria at any time t. Your expression must be such that if you know the time t and you have a calculator, then you can compute the number $P(t)$.
exponential growth means $P=C e^{k t}$.
two points: $(0,500),(30,1200)$.
(plug in $1^{t} p$ pl.).

$$
\begin{aligned}
& 500=c e^{0}=c \\
& \text { So } P=500 e^{k t}
\end{aligned}
$$

(plugin $2^{\text {nd }}$ pt.)
\qquad

$$
\frac{12}{5}=e^{k \cdot 30}
$$

$$
\ln \frac{12}{5}=30 k
$$

4. [4 points] The volume of a cone is given by $V=\frac{1}{3} \pi r^{2} h$ where r is the radius of the base of the cone and h is the height of the cone. Use a differential to estimate the change in volume of the cone if the height is fixed at 9 feet and the radius changes from 5 feet to 5.5 feet.

$$
\begin{aligned}
& V=\frac{1}{3} \pi r^{2} h \\
& h=9 \text { So } V=\frac{1}{3} \pi r^{2} \cdot 9=3 \pi r^{2} .
\end{aligned}
$$

differential:

$$
\begin{gathered}
d v=6 \pi r d r ; \text { given: } d r=0.5 \\
\Delta v \approx d v=6 \pi(5) \frac{1}{2}=15 \pi \mathrm{ft}^{3}
\end{gathered}
$$

