Name: \qquad
There are 25 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [8 points] A girl flies a kite at a height of 300 ft . A wind blows the kite horizontally at a rate of 20 $\mathrm{ft} / \mathrm{sec}$. How fast must she let out the string for the kite when the kite is 500 ft away from her?

girl

$$
a^{2}+300^{2}=c^{2}
$$

$$
2 a \frac{d a}{d t}=2 c \frac{d c}{d t}
$$

(need a : when $c=500 \quad a^{2}+300^{2}=500^{2}$ implies $a=400$.
Plugin: $2.400 \cdot 20=2.500 \cdot \frac{d c}{d t}$
$\frac{d c}{d t}=\frac{8000}{500}=\frac{80}{5} \mathrm{ft} / \mathrm{s}$ F How fast the string must
2. [5 points]

$$
f(x)=x^{-1}
$$

a. Compute the linear approximation of $f(x)=1 / x$ at $x=10$.

$$
\begin{aligned}
f(10) & =1 / 10 \\
f^{\prime}(x) & =-x^{-2} \\
f^{\prime}(10) & =\frac{-1}{100}
\end{aligned}
$$

$$
y-\frac{1}{10}=\frac{-1}{100}(x-10)
$$

$$
L(x)=\frac{1}{10}-\frac{1}{100}(x-10)
$$

b. Use your answer above to find a decimal approximation for $1 / 9$.

$$
\frac{1}{9}=f(9) \approx L(9)=\frac{1}{10}-\frac{1}{100}(9-10)=\frac{1}{10}+\frac{1}{100}=0.1+0.01=0.11
$$

3. [8 points] A population of bacteria is growing exponentially. At time $t=0$ minutes there are 400 bacteria. At time $t=30$ minutes there are 900 bacteria. Find an expression for $P(t)$, the population of the bacteria at any time t. Your expression must be such that if you know the time t and you have a calculator, then you can compute the number $P(t)$.
exponential growth means $P=C e^{k t}$.
two points: $(0,400),(30,900)$.
(plug in 1 st pt.)
$400=C e^{0}=c$.
So $P=400 e^{k t}$
(plug in $2^{\text {red }}$ pt.)
$900=400 e^{k \cdot 30}$

$$
\frac{9}{4}=e^{k \cdot 30}
$$

$$
\ln \frac{9}{4}=30 k
$$

4. [4 points] The volume of a cone is given by $V=\frac{1}{3} \pi r^{2} h$ where r is the radius of the base of the cone and h is the height of the cone. Use a differential to estimate the change in volume of the cone if the height is fixed at 6 feet and the radius changes from 5 feet to 5.5 feet.

$$
\begin{aligned}
& V=\frac{1}{3} \pi r^{2} h \\
& h=6 \text {. So } V=\frac{1}{3} \pi r^{2} \cdot 6=2 \pi r^{2} .
\end{aligned}
$$

differential:
$d v=4 \pi r d r ;$ given $d r=0.5$

$$
\Delta v \approx d v=4 \pi(5) \frac{1}{2}=10 \pi \mathrm{ft}^{3}
$$

