\qquad
There are 30 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [5 points] Sketch a function on $[-5,5]$ that has an absolute maximum value of 3 at $x=4$, an absolute minimum value of -2 at $x=-4$, and a local maximum at $x=1$. You should appropriately label notable values on the x - and y-axes for full credit.

2. [5 points] Find all critical points of the function $f(x)=x(x-1)^{1 / 3}$. Be careful!

$$
\begin{aligned}
& f^{\prime}(x)=(x-1)^{1 / 3}+\frac{x}{3}(x-1)^{-2 / 3} \\
& f^{\prime}(x) \text { does not exist at } x=1 \\
& f^{\prime}(x)=0: \quad(x-1)^{1 / 3}+\frac{x}{3}(x-1)^{2 / 3}=0 \\
& (x-1)+\frac{x}{3}=0 \\
& \frac{4}{3} x-1=0 \\
& x=\frac{3}{4}
\end{aligned}
$$

3. [10 points] Find the maximum and minimum values of the function $f(x)=1 / x-1 / x^{2}$ on the interval [1,10].

$$
\begin{aligned}
& f^{\prime}(x)=-\frac{1}{x^{2}}+\frac{2}{x^{3}} \\
& f^{\prime}(x)=0:-\frac{1}{x^{2}}+\frac{2}{x^{3}}=0 \Rightarrow-x+2=0 \Rightarrow x=2 \\
& f(1)=1-1=0 \\
& f(2)=\frac{1}{2}-\frac{1}{4}=\frac{1}{4} \longrightarrow \text { maximum value: } \frac{1}{4} \text { at } x=2
\end{aligned}
$$

4. [5 points] Suppose f is continuous on $[-2,2]$ and has a derivative at each point in $(-2,2)$. Suppose $f(-2)=6$ and $f(2)=-4$. What does the Mean Value Theorem let you conclude?
There is a point cir $(-2,2)$ where

$$
f^{\prime}(c)=\frac{-4-6}{2-(-2)}=\frac{-10}{4}=-\frac{5}{2}
$$

5. [5 points] Draw a diagram that illustrates the Mean Value Theorem in the context of the previous problem. Your illustration should include a tangent line somewhere.

