Name: \qquad
There are 30 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [5 points] Sketch a function on $[-5,5]$ that has an absolute maximum value of 3 at $x=-4$, an absolute minimum value of -2 at $x=4$, and a local minimum at $x=0$. You should appropriately label notable values on the x - and y-axes for full credit.

2. [5 points] Find all critical points of the function $f(x)=x(x-1)^{2 / 3}$. Be careful!

$$
\begin{aligned}
& f^{\prime}(x)=(x-1)^{4 / 3}+\frac{2 x}{3}(x-1)^{-1 / 3} \\
& f^{\prime}(x) \text { does not exist at } x=1 \\
& f^{\prime}(x)=0: \quad(x-1)^{2 / 3}+\frac{2 x}{3}(x-1)^{-1 / 3}=0 \\
& (x-1)+2 \frac{2 x}{3}=0 \\
& \frac{5}{3} x-1=0 \\
& x=\frac{3}{5}
\end{aligned}
$$

3. [10 points] Find the maximum and minimum values of the function $f(x)=1 / x-2 / x^{2}$ on the interval [1,10].

$$
\begin{aligned}
& f^{\prime}(x)=-\frac{1}{x^{2}}+\frac{4}{x^{3}} \\
& f^{\prime}(x)=0:-\frac{1}{x^{2}}+\frac{4}{x^{3}}=0 \Rightarrow-x+4=0 \\
& f(1)=1-2=-1 \\
& f(4)=\frac{1}{4}-\frac{2}{16}=\frac{1}{4}-\frac{1}{8}=\frac{1}{8} \quad \text { minimum of }-1 \text { at } x=1 \\
& f(10)=\frac{1}{10}-\frac{1}{100}
\end{aligned}
$$

4. [5 points] Suppose f is continuous on $[-2,2]$ and has a derivative at each point in $(-2,2)$. Suppose $f(-2)=-2$ and $f(2)=3$. What does the Mean Value Theorem let you conclude?

There is a point c in $(-2,2)$ with $f^{\prime}(c)=\frac{3-(-2)}{2-(-2)}=\frac{5}{4}$
5. [5 points] Draw a diagram that illustrates the Mean Value Theorem in the context of the previous problem. Your illustration should include a tangent line somewhere.

