There are 30 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [10 points] Sketch the graph of a continuous function with domain \mathbb{R} that satisfies all of the following features.
2. $f(3)=0$,
3. $f^{\prime}(x)>0$ for $x<0 ; f^{\prime}(x)<0$ for x in $(0,3) ; f^{\prime}(x)>0$ for $x>0$,
4. $f^{\prime}(0)=f^{\prime}(3)=0$,
5. $f^{\prime \prime}(x)<0$ for $-1<x<1$; $f^{\prime \prime}(x)>0$ for $x<-1$ or $x>1$
6. $\lim _{x \rightarrow-\infty}=0 ; \quad \lim _{x \rightarrow \infty} f(x)=\infty$

Your sketch should label all interesting points on the x-axis. Additionally, place a small triangle on the graph at any points of inflection.

2. [6 points] Compute the following limits.
a. $\lim _{x \rightarrow 1} \frac{x^{a}-1}{x^{2 b}-1}$ where a and b are constants, $b \neq 0$.
$\lim _{x \rightarrow 1} \frac{x^{a}-1}{x^{2 b}-1}=\lim _{x \rightarrow 1} \frac{a x^{a-1}}{2 b x^{2 b-1}}=\frac{a}{2 b}$
b. $\lim _{x \rightarrow \infty} x^{2} e^{-3 x}$.
$\lim _{x \rightarrow \infty} x^{2} e^{-3 x}=\lim _{x \rightarrow \infty} \frac{x^{2}}{e^{3 x}} \stackrel{\frac{60}{0}}{=} \lim _{x \rightarrow \infty} \frac{2 x}{3 e^{3 x}} \stackrel{\frac{\infty}{\infty 0}}{=} \lim _{x \rightarrow \infty} \frac{2}{9 e^{3 x}}=0$
3. [6 points] Consider the function $f(x)=\frac{1}{x}+\ln x$. We have computed for you

$$
f^{\prime}(x)=\frac{x-1}{x^{2}} ; \quad f^{\prime \prime}(x)=\frac{2-x}{x^{23}}
$$

a. Find the intervals where $f(x)$ is increasing and decreasing. [Be careful about the domain of $f(x)$!]

$$
f^{\prime}(x)=\frac{x-1}{x^{2}} \longleftarrow \operatorname{detemines} \operatorname{sinn} \longrightarrow
$$

$\frac{\text { decreasis on }(0, l), M c \text { on }(1, \infty)}{\text { b. Find the intervals where } f(x) \text { is concave up and concave down. }} \leftarrow$

$$
f^{\prime \prime}(x)=\frac{2-x}{x^{3}} \longleftarrow>0 \text { on }(0, \infty) \text { determines sign }
$$

$0 \quad 2$
4. [8 points] Consider the function $f(x)=x \ln x$.

Concave up: $(0,2)$, concave down $(2, \infty)$
a. This function has a single critical point c. Find it.

$$
\begin{aligned}
& f^{\prime}(x)=\ln (x)+\frac{x}{x}=\ln (x)+1 \\
& f^{\prime}(c)=0 \Rightarrow c=e^{-1}
\end{aligned}
$$

b. Use the First Derivative Test to classify the critical point c from part a) as a local minimum/maximum/neither.

$$
\ln (\varphi)+1=
$$

cis location of a local mun
c. Use the Second Derivative Test to classify the critical point c from part a) as a local minimum or maximum if this is possible (or state that the Second Derivative Test is inconclusive).

$$
\begin{aligned}
& \left.f^{\prime \prime}(x)=\frac{1}{x}>0 \text { on (} 0,0\right) \\
& f^{\prime \prime}(0)>0 \Rightarrow c \text { is locution ot a loci mus. }
\end{aligned}
$$

