Name: \qquad
There are 30 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [10 points] Sketch the graph of a continuous function with domain \mathbb{R} that satisfies all of the following features.
2. $f(3)=0$,
3. $f^{\prime}(x)>0$ for $x<0 ; f^{\prime}(x)<0$ for x in $(0,3) ; f^{\prime}(x)>0$ for $x>0$,
4. $f^{\prime}(0)=f^{\prime}(3)=0$,
5. $f^{\prime \prime}(x)<0$ for $-1<x<1$; $f^{\prime \prime}(x)>0$ for $x<-1$ or $x>1$
6. $\lim _{x \rightarrow-\infty} f(x)=0 ; \quad \lim _{x \rightarrow \infty} f(x)=\infty$

Your sketch should label all interesting points on the x-axis. Additionally, place a small triangle on the graph at any points of inflection.

2. [6 points] Compute the following limits.
a. $\lim _{x \rightarrow 1} \frac{x^{a}-1}{x^{2 b}-1}$ where a and b are constants, $b \neq 0$.
b. $\lim _{x \rightarrow \infty} x^{2} e^{-3 x}$.
3. [6 points] Consider the function $f(x)=\frac{1}{x}+\ln x$. We have computed for you

$$
f^{\prime}(x)=\frac{x-1}{x^{2}} ; \quad f^{\prime \prime}(x)=\frac{2-x}{x^{3}} .
$$

a. Find the intervals where $f(x)$ is increasing and decreasing. [Be careful about the domain of $f(x)$!]
b. Find the intervals where $f(x)$ is concave up and concave down.
4. [8 points] Consider the function $f(x)=x \ln x$.
a. This function has a single critical point c. Find it.
b. Use the First Derivative Test to classify the critical point c from part a) as a local minimum/maximum/neither.
c. Use the Second Derivative Test to classify the critical point c from part a) as a local minimum or maximum if this is possible (or state that the Second Derivative Test is inconclusive).

