Name: \qquad
There are 30 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [10 points] Sketch the graph of a continuous function with domain \mathbb{R} that satisfies all of the following features.
2. $f(-3)=0$,
3. $f^{\prime}(x)<0$ for $x<-3 ; \quad f^{\prime}(x)>0$ for x in $(-3,0) ; \quad f^{\prime}(x)<0$ for $x>0$,
4. $f^{\prime}(-3)=f^{\prime}(0)=0$,
5. $f^{\prime \prime}(x)<0$ for $-1<x<1$; $f^{\prime \prime}(x)>0$ for $x<-1$ or $x>1$
6. $\lim _{x \rightarrow-\infty}=\infty ; \quad \lim _{x \rightarrow \infty} f(x)=0$

Your sketch should label all interesting points on the x-axis. Additionally, place a small triangle on the graph at any points of inflection.

2. [6 points] Compute the following limits.
a. $\lim _{x \rightarrow 1} \frac{x^{2 a}-1}{x^{b}-1}$ where a and b are constants, $b \neq 0$.

$$
\lim _{x \rightarrow 1} \frac{x^{2 a}-1}{x^{b}-1}=\lim _{x \rightarrow 1} \frac{2 a x^{2 a-1}}{b x^{b-1}}=\frac{2 a}{b}
$$

b. $\lim _{x \rightarrow \infty} x^{2} e^{-4 x}$.
3. [6 points] Consider the function $f(x)=\frac{2}{x}+\ln x$. We have computed for you

$$
f^{\prime}(x)=\frac{x-2}{x^{2}} ; \quad f^{\prime \prime}(x)=\frac{4-x}{x^{3}}
$$

a. Find the intervals where $f(x)$ is increasing and decreasing. [Be careful about the domain of

b. Find the intervals where $f(x)$ is concave up and concave down.

$$
f^{\prime \prime}(x): \frac{4-x}{x^{3} \lll 0 \text { an domain }(0, \infty)}
$$

(0,4): concave op
$(4, \infty)$: concave dawn
4. [8 points] Consider the function $f(x)=x \ln x$.
a. This function has a single critical point c. Find it.

$$
\begin{aligned}
& f^{\prime}(x)=\ln (x)+\frac{x}{x}=\ln (x)+1 \\
& f^{\prime}(c)=0 \Rightarrow c=e^{-1}
\end{aligned}
$$

b. Use the First Derivative Test to classify the critical point c from part a) as a local minimum/maximum/neither.

$$
\ln (x)+1=
$$

cis locution of a local mun
c. Use the Second Derivative Test to classify the critical point c from part a) as a local minimum or maximum if this is possible (or state that the Second Derivative Test is inconclusive).

$$
\begin{aligned}
& f^{\prime \prime}(x)=\frac{1}{x}>0 \text { on }(0,0) \\
& f^{\prime \prime}(0)>0 \Rightarrow \text { is locution ot a load mu. }
\end{aligned}
$$

