Math 251: Quiz 3

Name:

February 5, 2019

__ / 25

1

Rhodes (F01) | Bueler (F02) Circle one:

25 points possible. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [5 points] Evaluate the limit. Show work and use proper limit notation for full credit.

LUTIONS

$$\lim_{h \to 0} \frac{\frac{1}{3+h} - \frac{1}{3}}{h} = \lim_{h \to 0} \frac{\frac{3 - (3+h)}{(3+h)3}}{h} = \lim_{h \to 0} \frac{\frac{8 - 8 - h}{(3+h)3}}{h}$$
$$= \lim_{h \to 0} \frac{-1}{(3+h) \cdot 3} = \frac{-1}{3 \cdot 3} = -\frac{1}{9}$$

2. [5 points] Evaluate the limit. Show work and use proper limit notation for full credit.

$$\lim_{x \to -2} \frac{3x+6}{x^2-4} = \lim_{X \to -2} \frac{3(x+2)}{(x+2)(x-2)} = \lim_{X \to -2} \frac{3}{x-2}$$
$$= \frac{3}{(-2)-2} = -\frac{3}{4}$$

3. [4 points]

a. Why is the following not a true statement?:

$$\frac{x^2+5x}{x} = x+5$$
The Sunchin on the left has a
different domain from the Sunction
on the right. (Domains are (-000)U(0,00)
on left and (-00,00) an right.)

b. Explain why the following equation is correct:

$$\lim_{x \to 0} \frac{x^2 + 5x}{x} = \lim_{x \to 0} x + 5$$
Limits 'x $\Rightarrow a''$ don't care about
the value at a, but only about
the function values near a. The
two functions agree for values other
1 than $x=0$. v-1

UAF C

February 5, 2019

Math 251: Quiz 3

- 4. [6 points] Consider the function $f(x) = \begin{cases} x^2 + 1 & \text{if } x < 0 \\ -1 & \text{if } x = 0 \\ 1 2x & \text{if } x > 0 \end{cases}$
 - **a**. On the axes below, sketch a graph of f(x).

b. Evaluate the limit, or explain why it does not exist:

$$\lim_{x \to 0} f(x) = 1 \qquad \left(\begin{array}{c} \text{because } \lim_{X \to 0^-} f(x) = \lim_{X \to 0^-} \chi^2 + 1 = 1 \\ \text{and } \lim_{X \to 0^+} f(x) = \lim_{X \to 0^+} |-2\chi = 1 \end{array} \right)$$

c. Is f continuous at x = 0? Explain using the definition of continuity.

No. Here
$$-1 = f(o) \neq \lim_{x \to o} f(x) = 1$$
.

5. [5 points] Use the Intermediate Value Theorem to show that there is a root of the equation $x - 3\cos(x) - 6 = 0$ in the interval $(0, \pi)$.

Let
$$f(x) = x - 3\cos(x) - 6$$
. Nok $f(x)$ is continuous.
Also $f(0) = 0 - 3 - 6 = -9 < 0$ and $f(\pi) = \pi - 3\cos(\pi) - 6$
 $= \pi + 3 - 6 > 3 + 3 - 6 = 0$. By the IVT there is $c \sin(0,\pi)$
so that $f(c) = 0$.
UAF Calculus I 2 v-1