Name: \qquad
\qquad
Circle one: Rhodes (F01) I Bueler (F02)
25 points possible. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [5 points] Evaluate the limit. Show work and use proper limit notation for full credit.

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{1+-\frac{1}{h}}{h}=\lim _{h \rightarrow 0} \frac{\frac{3-(3+h)}{(3+h) 3}}{h}=\lim _{h \rightarrow 0} \frac{b-F-h}{(3+h) \cdot 3 h} \\
& =\lim _{h \rightarrow 0} \frac{-1}{(3+h) \cdot 3}=\frac{-1}{3 \cdot 3}=-\frac{1}{9}
\end{aligned}
$$

2. [5 points] Evaluate the limit. Show work and use proper limit notation for full credit.

$$
\begin{aligned}
\lim _{x \rightarrow-2} \frac{3 x+6}{x^{2}-4} & =\lim _{x \rightarrow-2} \frac{3(x+2)}{(x+2)(x-2)}=\lim _{x \rightarrow-2} \frac{3}{x-2} \\
& =\frac{3}{(-2)-2}=-\frac{3}{4}
\end{aligned}
$$

3. [4 points]
a. Why is the following not a true statement?: $\frac{x^{2}+5 x}{x}=x+5$

The function on the left has a different domain from the function on the right. (Domains are $(-\infty, \infty) \cup(0, \infty)$ on left and $(-\infty, \infty)$ on right.)
b. Explain why the following equation is correct:

$$
\lim _{x \rightarrow 0} \frac{x^{2}+5 x}{x}=\lim _{x \rightarrow 0} x+5 \quad \text { Limits " } x \rightarrow a \text { "don't care about }
$$

the value at a, but only about the function values near a. The two functime agree for values other
4. [6 points] Consider the function $f(x)=\left\{\begin{array}{ll}x^{2}+1 & \text { if } x<0 \\ -1 & \text { if } x=0 \\ 1-2 x & \text { if } x>0\end{array}\right.$.
a. On the axes below, sketch a graph of $f(x)$.

b. Evaluate the limit, or explain why it does not exist:

$$
\begin{array}{r}
\lim _{x \rightarrow 0} f(x)=1 \quad\left(\text { because } \lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} x^{2}+1=1\right. \\
\text { and } \left.\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} 1-2 x=1\right)
\end{array}
$$

c. Is f continuous at $x=0$? Explain using the definition of continuity.

No. Here

$$
-1=f(0) \neq \lim _{x \rightarrow 0} f(x)=1 .
$$

5. [5 points] Use the Intermediate Value Theorem to show that there is a root of the equation $x-3 \cos (x)-6=0$ in the interval $(0, \pi)$.
Let $f(x)=x-3 \cos (x)-6$. Note $f(x)$ is continuous.
Also $f(0)=0-3-6=-9<0$ and $f(\pi)=\pi-3 \cos (\pi)-6$
$=\pi+3-6>3+3-6=0$. By the IUT there is c in $(0, \pi)$ so that $f(c)=0$.
