Name:
Circle one: Rhodes (F01) I Bueler (F02)
25 points possible. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [5 points] Evaluate the limit. Show work and use proper limit notation for full credit.
$\lim _{h \rightarrow 0} \frac{\frac{1}{3+h}-\frac{1}{3}}{h}$
2. [5 points] Evaluate the limit. Show work and use proper limit notation for full credit.

$$
\lim _{x \rightarrow-2} \frac{3 x+6}{x^{2}-4}
$$

3. [4 points]

a. Why is the following not a true statement?:

$$
\frac{x^{2}+5 x}{x}=x+5
$$

b. Explain why the following equation is correct:

$$
\lim _{x \rightarrow 0} \frac{x^{2}+5 x}{x}=\lim _{x \rightarrow 0} x+5
$$

4. [6 points] Consider the function $f(x)= \begin{cases}x^{2}+1 & \text { if } x<0 \\ -1 & \text { if } x=0 \\ 1-2 x & \text { if } x>0\end{cases}$
a. On the axes below, sketch a graph of $f(x)$.

b. Evaluate the limit, or explain why it does not exist:
$\lim _{x \rightarrow 0} f(x)$
c. Is f continuous at $x=0$? Explain using the definition of continuity.
5. [5 points] Use the Intermediate Value Theorem to show that there is a root of the equation $x-3 \cos (x)-6=0$ in the interval $(0, \pi)$.
