$\underset{\substack{\text { nathans: Quiz } \\ \text { Name: } \\ \text { SOLUTIONS }}}{ }$
Circle one: Rhodes (F01) I Bueler (F02)
25 points possible. No aids (book, calculator, etc.) are permitted. You need not simplify, but show all work and use proper notation for full credit.

1. [4 points] Use the graph to state all the absolute and local maximum and minimum values of the function.
abs.max.@x=0 no abs. min.

$$
\begin{aligned}
& \text { loo. max @ } x=2,3 \\
& \text { loc.min. @ } x=4
\end{aligned}
$$

2. [7 points] Find the absolute maximum and absolute minimum values of f on the given interval.

$$
\begin{aligned}
& f(x)=1+24 x-2 x^{3}, \quad[0,3] \\
& f^{\prime}(x)=24-6 x^{2} \\
& x^{2}=4 \\
& x= \pm 2 \\
& -2 \text { is not in }[0,3] \\
& \text { in }[0,3]
\end{aligned}
$$

3. [8 points] Suppose f is continuous on $[0,4]$ and has a derivative at each point in $(0,4)$. Suppose $f(0)=5$ and $f(4)=-1$.
a. What specifically does the Mean Value Theorem let you conclude?

$$
\begin{aligned}
& \text { there is } c \text { in }[0,4] \text { so that } \\
& f^{\prime}(c)=\frac{-1-5}{4}=\frac{-6}{4}=\frac{-3}{2}
\end{aligned}
$$

b. Draw a diagram that illustrates the Mean Value Theorem for this problem. Your illustration should include a tangent line somewhere.

4. [6 points] Find the critical numbers (critical points) of the function.

$$
\begin{aligned}
& g(t)=r^{2}-3 x \\
& g^{\prime}(t)=2 t \cdot e^{-3 t}+t^{2} e^{-3 t}(-3) \\
&=e^{-3 t}\left(2 t-3 t^{2}\right)=e^{-3 t} \cdot t \cdot(2-3 t) \\
& g^{\prime}(t)=0 \Leftrightarrow t=0 \\
& \quad \text { or } \\
& 2-3 t=0 \Leftrightarrow t=\frac{2}{3}
\end{aligned}
$$

