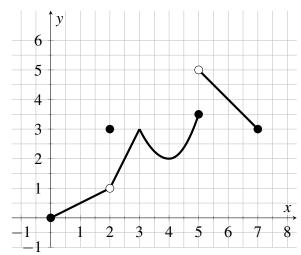
Math 251: Quiz 7

Name: .

SOLUTIONS

March 26, 2019


___ / 25

Circle one: Rhodes (F01) | Bueler (F02)

25 points possible. No aids (book, calculator, etc.) are permitted. You need not simplify, but show all work and use proper notation for full credit.

1. [4 points] Use the graph to state all the <u>absolute</u> and <u>local</u> maximum and minimum values of the function.

abs. min @ x=0
no abs, max.
loc. min @ X=4
loc. max @ x=2,3

2. [7 points] Find the absolute maximum and absolute minimum values of f on the given interval.

 $f(x) = 2x^3 - 24x - 1$, [0,3]

 $f'(x) = 6x^2 - 24 = 0$

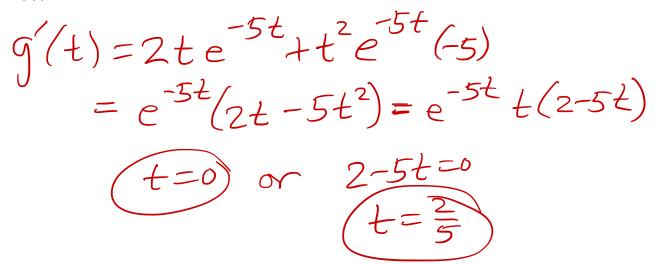
1

X=-2 is not

(N [0,3]

+2 -33 3 -19

abs, min@ X=Z

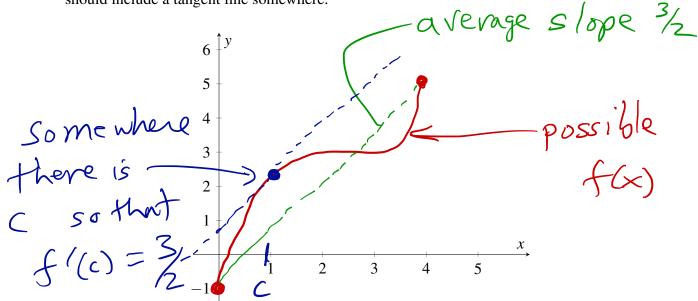

abs. max@x=0

v-2

Math 251: Quiz 7 March 26, 2019

3. [6 points] Find the critical numbers (critical points) of the function.

$$g(t) = t^2 e^{-5t}$$



4. [8 points] Suppose f is continuous on [0,4] and has a derivative at each point in (0,4). Suppose f(0) = -1 and f(4) = 5.

a. What specifically does the Mean Value Theorem let you conclude?

There is c in [0,4] so that $f(c) = \frac{5 - (-1)}{4 - 0} = \frac{6}{4} = \frac{3}{2}$

b. Draw a diagram that illustrates the Mean Value Theorem for this problem. Your illustration should include a tangent line somewhere.

