Math 251: Quiz 8 SOLUTIONS
Name: \qquad / 25
Circle one: Rhodes (F01) I Bueler (F02)
25 points possible. No aids (book, calculator, etc.) are permitted. You need not simplify, but show all work and use proper notation for full credit.

1. [8 points] Sketch an appropriately labeled graph of a function that satisfies all of the given condilions.
2. $f(0)=2$
3. $f^{\prime}(1)=0$
4. $f^{\prime}(x)>0$ for $x<1 ; \quad f^{\prime}(x)<0$ for $x>1$
5. $f^{\prime \prime}(x)>0$ for $x<-2 ; \quad f^{\prime \prime}(x)<0$ for $x>-2$
6. $\lim _{x \rightarrow-\infty} f(x)=-3 ; \quad \lim _{x \rightarrow \infty} f(x)=-\infty$

7. [4 points] Compute the following limits.

b. $\lim _{n \rightarrow 0} \frac{x^{2}}{e^{x-2}}=\frac{0^{2}}{e^{0}-2}=\frac{0}{1-2}=0$
8. [13 points] Consider the function $f(x)=\ln \left(x^{2}+9\right)$. We have computed for you

$$
f^{\prime}(x)=\frac{2 x}{x^{2}+9}, \quad f^{\prime \prime}(x)=\frac{-2 x^{2}+18}{\left(x^{2}+9\right)^{2}}
$$

a. Find the domain of $f(x)$.

$$
x^{2}+9>0 \checkmark \quad(-\infty, \infty)
$$

b. Find intercepts.

$$
\begin{array}{r}
\ln \left(x^{2}+9\right) \geqslant \ln (9)>0 \text { so no } x \text {-intercepts } \\
y=\ln (9)<y \text { intercept }
\end{array}
$$

c. Find the critical points).

$$
f^{\prime}(x)=0=\frac{2 x}{x^{2}+9} \quad \therefore \quad x=0
$$

d. Determine the intervals where $f(x)$ is increasing and decreasing.
increasing on $[0, \infty)$
decreasing on $(-\infty, 0]$
e. Find the intervals where $f(x)$ is concave up and concave down.

$$
\begin{array}{cl}
-2 x^{2}+18=0 & \text { concave up on }(-3,3) \\
x^{2}=9 & \text { Concave down on }(-\infty,-3) \cup(3, \infty) \\
x= \pm 3 &
\end{array}
$$

f. Using the above information, sketch the graph of $f(x)$, making sure to label x-coordinates of all important points. [Hint: $\ln 9 \approx 2$]

