Name:

Circle one: Rhodes (F01) I Bueler (F02)

25 points possible. No aids (book, calculator, etc.) are permitted. You need not simplify, but show all work and use proper notation for full credit.

1. [8 points] Sketch an appropriately labeled graph of a function that satisfies all of the given conditions.
2. $f(0)=2$
3. $f^{\prime}(1)=0$
4. $f^{\prime}(x)>0$ for $x<1 ; \quad f^{\prime}(x)<0$ for $x>1$
5. $f^{\prime \prime}(x)>0$ for $x<-2 ; \quad f^{\prime \prime}(x)<0$ for $x>-2$
6. $\lim _{x \rightarrow-\infty} f(x)=-3 ; \quad \lim _{x \rightarrow \infty} f(x)=-\infty$

7. [4 points] Compute the following limits.
a. $\lim _{x \rightarrow \infty} \frac{\sqrt{x}}{e^{2 x}}$
b. $\lim _{x \rightarrow 0} \frac{x^{2}}{e^{x}-2}$
8. [13 points] Consider the function $f(x)=\ln \left(x^{2}+9\right)$. We have computed for you

$$
f^{\prime}(x)=\frac{2 x}{x^{2}+9}, \quad f^{\prime \prime}(x)=\frac{-2 x^{2}+18}{\left(x^{2}+9\right)^{2}}
$$

a. Find the domain of $f(x)$.
b. Find intercepts.
c. Find the critical point(s).
d. Determine the intervals where $f(x)$ is increasing and decreasing.
e. Find the intervals where $f(x)$ is concave up and concave down.
f. Using the above information, sketch the graph of $f(x)$, making sure to label x-coordinates of all important points. [Hint: $\ln 9 \approx 2$]

