Name: _

Circle one: Rhodes (F01) | Bueler (F02)

25 points possible. No aids (book, calculator, etc.) are permitted. You need not simplify, but show all work and use proper notation for full credit.

- **1. [8 points]** Sketch an appropriately labeled graph of a function that satisfies all of the given conditions.
 - 1. f(0) = 2
 - 2. f'(1) = 0
 - 3. f'(x) > 0 for x < 1; f'(x) < 0 for x > 1
 - 4. f''(x) > 0 for x < -2; f''(x) < 0 for x > -2
 - 5. $\lim_{x \to -\infty} f(x) = -3; \quad \lim_{x \to \infty} f(x) = -\infty$

2. [4 points] Compute the following limits.

a.
$$\lim_{x\to\infty} \frac{\sqrt{x}}{e^{2x}}$$

b.
$$\lim_{x \to 0} \frac{x^2}{e^x - 2}$$

Math 251: Quiz 8

3. [13 points] Consider the function $f(x) = \ln(x^2 + 9)$. We have computed for you

$$f'(x) = \frac{2x}{x^2 + 9}, \qquad f''(x) = \frac{-2x^2 + 18}{(x^2 + 9)^2}.$$

- **a**. Find the domain of f(x).
- **b**. Find intercepts.
- **c**. Find the critical point(s).
- **d**. Determine the intervals where f(x) is increasing and decreasing.
- **e**. Find the intervals where f(x) is concave up and concave down.
- f. Using the above information, sketch the graph of f(x), making sure to label *x*-coordinates of all important points. [Hint: $\ln 9 \approx 2$]

