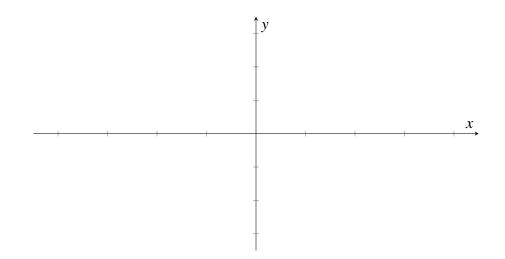
Circle one: Rhodes (F01) | Bueler (F02)

25 points possible. No aids (book, calculator, etc.) are permitted. You need not simplify, but show all work and use proper notation for full credit.

1. [8 points] Sketch an appropriately labeled graph of a function that satisfies all of the given conditions.


1.
$$f(0) = -2$$

2.
$$f'(1) = 0$$

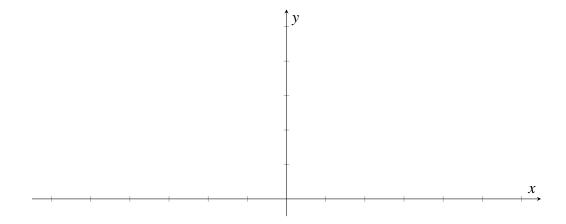
3.
$$f'(x) < 0$$
 for $x < 1$; $f'(x) > 0$ for $x > 1$

4.
$$f''(x) < 0$$
 for $x < -2$; $f''(x) > 0$ for $x > -2$

5.
$$\lim_{x \to -\infty} f(x) = 3$$
; $\lim_{x \to \infty} f(x) = \infty$

2. [4 points] Compute the following limits.

a.
$$\lim_{x \to \infty} \frac{\sqrt{x}}{e^{3x}}$$


b.
$$\lim_{x \to 0} \frac{x^2}{2 - e^x}$$

_ / 25

3. [13 points] Consider the function $f(x) = \ln(x^2 + 4)$. We have computed for you

$$f'(x) = \frac{2x}{x^2 + 4},$$
 $f''(x) = \frac{-2x^2 + 8}{(x^2 + 4)^2}.$

- **a**. Find the domain of f(x).
- **b**. Find intercepts.
- **c**. Find the critical point(s).
- **d**. Determine the intervals where f(x) is increasing and decreasing.
- **e**. Find the intervals where f(x) is concave up and concave down.
- **f**. Using the above information, sketch the graph of f(x), making sure to label *x*-coordinates of all important points. [Hint: $\ln 4 \approx 1.5$]

